PROBLEM:

This problem is concerned with finding the output of an FIR filter for a given input signal. A linear timeinvariant system is described by the difference equation

$$
y[n]=\sum_{k=0}^{4}(k+1) x[n-k]
$$

The input to this system is unit step signal, denoted by $u[n]$, i.e., $\quad x[n]=u[n]= \begin{cases}0 & n<0 \\ 1 & n \geq 0\end{cases}$
(a) Determine the filter coefficients $\left\{b_{k}\right\}$ of this FIR filter.
(b) Determine the impulse response, $h[n]$, for this FIR filter. The impulse response is a discrete-time signal, so make a (stem) plot of $h[n]$ versus n.
(c) Use convolution to compute $y[n]$, over the range $-5 \leq n \leq \infty$, when the input is $u[n]$. Make a plot of $y[n]$ vs. n. (Hint: you might find it useful to check your results with Matlab's conv () function.)
a) $y[n]=1_{1} x[n]+2 x[n-1]+3 x[n-2]+4 x[n-3]+5 x[n-4]$

Filter coefficients $\begin{array}{llll}b_{0}=1 & b_{1}=2 & b_{2}=3 & p_{3}=4 \\ b_{4}=5\end{array}$
$\left(b_{n}=0\right.$ for $n<0$ and $\left.n>4\right)$
b) $h[n]=\delta[n]+2 \delta[n-1]+3 \delta[n-2]+4 \delta[n-3]+5 \delta[n-4]$

c) $y[n]=\sum_{k=0}^{4} h[k] u(n-k)$

n	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7	8	9	10
$u(n)$	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1
$h(n)$	0	0	0	0	0	1	2	3	4	5	0	0	0	0	0	0
$h(0) u(n)$	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1
$h(1) u(n-1)$	0	0	0	0	0	0	2	2	2	2	2	2	2	2	2	2
$h(2) u(n-2)$	0	0	0	0	0	0	0	3	3	3	3	3	3	3	3	3
$h(3) u(n-3)$	0	0	0	0	0	0	0	0	4	4	4	4	4	4	4	4
$h(4) u(n-4)$	0	0	0	0	0	0	0	0	0	5	5	5	5	5	5	5
$y[n]$	0	0	0	0	0	1	3	6	10	15	15	15	15	15	15	15

