

PROBLEM:

This problem is concerned with finding the output of an FIR filter for a given input signal. A linear time-invariant system is described by the difference equation

$$y[n] = \sum_{k=0}^{4} (k+1)x[n-k]$$

The input to this system is *unit step* signal, denoted by u[n], i.e., $x[n] = u[n] = \begin{cases} 0 & n < 0 \\ 1 & n \ge 0 \end{cases}$

- (a) Determine the filter coefficients $\{b_k\}$ of this FIR filter.
- (b) Determine the impulse response, h[n], for this FIR filter. The impulse response is a discrete-time signal, so make a (stem) plot of h[n] versus n.
- (c) Use convolution to compute y[n], over the range $-5 \le n \le \infty$, when the input is u[n]. Make a plot of y[n] vs. n. (Hint: you might find it useful to check your results with MATLAB's conv() function.)

a)
$$V[n] = 1 \times [n] + 2 \times [n-1] + 3 \times [n-2] + 4 \times [n-3] + 5 \times [n-4]$$

Filter coefficients $b_0 = 1$ $b_1 = 2$ $b_2 = 3$ $b_3 = 4$ $b_4 = 5$

($b_n = 0$ for $n \ge 0$ and $n > 4$)

c)
$$y[n] = \sum_{k=0}^{4} h[k] u(n-k)$$

n 1	-5	-4	-3	<u>-2</u>	-1	0	1	3	3	4	5	6	7	8	9	10
u(n)	6	0														
1/2)	0	0	0	0	0	1	٦ ک	3	4	5	0	0	0	٥	0	<u>a</u>
ha) u(n)	0			_	A	i	١	- (1	١	1	i	1	- (l	1
herrach-1)	1			_	•	_	\sim		. 7			- 人	~	σ		65
h(2)u(n-2)	0															
h(3) u(n-3)	0	0	0	0	0	0	\mathcal{C}	, ,	'	. 4	7		,	•		1
h(4) u (n-4)	10	0	0	0	0	0	0	C	· C	5	5	5	5	5	>	>
y[n]	0	0	0	0	0,	1	3	6	10	2 (5 1	5 15	5 15 —	15	15	15
y[n] 00000, 13610151515151515 Y[n] for y[n] y[n] y[n] for y[n] y[n] for y[n] y[n] y[n] y[n] y[n] y[n] y[n] y[n]																