PROBLEM:

The diagram in Fig. 1 depicts a cascade connection of two linear time-invariant systems; i.e., the output of the first system is the input to the second system, and the overall output is the output of the second system.

Figure 1: Cascade connection of two LTI systems.
(a) Suppose that System \#1 is a blurring filter described by the impulse response:

$$
h_{1}[n]= \begin{cases}0 & n<0 \\ \beta^{n} & n=0,1,2,3,4,5 \\ 0 & n>5\end{cases}
$$

and System \#2 is described by the difference equation

$$
y_{2}[n]=y_{1}[n]-\beta y_{1}[n-1]
$$

Determine the impulse response function of the overall cascade system.
(b) Obtain a single difference equation that relates $y[n]$ to $x[n]$ in Fig. 1. Give numerical values of the filter coefficients for the specific case where $\beta=\frac{1}{2}$.

CASCADE CONNECTION

\#1 $\quad h_{1}[n]=\begin{array}{ll}0 & n<0 \\ \beta^{n} & n=012345 \\ 0 & n>5\end{array}$
$\# 2 \quad h_{2}[n]:$

$$
\begin{aligned}
& y_{2}[n]=y_{1}[n]-\beta y_{1}[n-1] \\
& h_{2}[n]=\delta[n]-\beta \delta[n-1]
\end{aligned}
$$

The cascade impulse response is Determined by the convolution $h_{1} * h_{2}$

n	0	1	2	3	4	5	6
$h_{1}[m]$	1	β	β^{2}	β^{3}	β^{4}	β^{5}	0
$h_{2}[n]$	1	$-\beta$	0	0	0	0	0
$h_{2}[0] h_{1}[n]$	1	β	β^{2}	β^{3}	β^{4}	β^{5}	0
$h_{2}[1] h_{1}[n-1]$	0	$-\beta$	$-\beta^{2}$	$-\beta^{3}$	$-\beta^{4}$	$-\beta^{5}$	$-\beta^{6}$
$h_{2}[2] h_{1}[n-2]$	0	0	0	0	0	0	0
$y[n]$	\vdots						
y	1	0	0	0	0	0	$-\beta^{6}$

overall response: $h[n]=\delta[n]-\beta^{6} \delta[n-6]$
(b) Difference Equation for system

$$
\begin{aligned}
& y[n]=x[n]-\beta^{6} \times[n-6] \\
& b_{0}=1 \\
& b_{n}=0, n \neq 006 \\
& b_{6}=-\beta^{6} \\
& \beta=1 / 2 \\
& b_{6}=-\frac{1}{2^{6}}=-\frac{1}{64} \\
& y[n]=x[n]-\frac{1}{64} \times[n-6]
\end{aligned}
$$

(b)

$$
y_{1}[n]=\sum_{k=0}^{M} b_{k} x[n-k]
$$

b_{k} Are the impulse response coefficients

$$
\begin{gathered}
b_{k}=\begin{array}{c}
0 \\
\beta^{k} \quad k<0 \\
0 \quad k=0,1,2,3,4,5
\end{array} \\
y_{2}[n]=y_{1}[n]-\beta y_{1}[n-k] \\
y_{2}[n]=\sum_{k=0}^{M} b_{n} x[n-k]-\beta \sum_{n=0}^{M} b_{n} x[n-1-k] \\
M=5, b_{k}=\beta^{k} \\
y_{2}[n]=\sum_{k=0}^{5} \beta^{k} x[n-k]-\beta \sum_{n=0}^{5} \beta^{k} x[n-1-k] \\
y_{2}[n]=y[n]=x[n]-\beta^{6} x[n-6] \\
\text { if } \beta=1 / 2 \\
y[n]=x[n]-\frac{1}{64} x[n-6]
\end{gathered}
$$

Note: Equation $y[n]=X[n]-\beta^{6} x[n-6]$
Also follows from inspection of impulse response $h[n]=\delta[n]-\beta^{6} \delta[n-6]$ [previous pAge]

