PROBLEM:

The diagram in Fig. 1 depicts a cascade connection of two linear time-invariant systems; i.e., the output of the first system is the input to the second system, and the overall output is the output of the second system.

Figure 1: Cascade connection of two LTI systems.
Suppose that System \#1 is an FIR filter described by the impulse response:

$$
h_{1}[n]= \begin{cases}0 & n<0 \\ 2^{n} & n=0,1,2,3,4,5 \\ 0 & n>5\end{cases}
$$

and System \#2 is described by the difference equation

$$
y_{2}[n]=y_{1}[n]-2 y_{1}[n-1]
$$

(a) Determine the filter coefficients of System \#1, and also for System \#2.
(b) When the input signal $x[n]$ is an impulse, $\delta[n]$, determine the signal $y_{1}[n]$ and make a plot.
(c) Determine the impulse response of System \#2.
(d) Determine the impulse response of the overall cascade system, i.e., find $y[n]$ when $x[n]=\delta[n]$.
a) Filter coefficients, $a_{0}=2^{\circ}, a_{1}=2, a_{2}=2, a_{3}=2, a_{4}=2, a_{5}^{4}, 2^{5}$
for system \#1 $a_{0}=1, a_{1}=2, a_{2}=4, a_{3}=8, a_{4}=16, a_{5}=32$
for system \#2: $b_{0}=1, b_{1}=-2$
b) When $x[n]=\delta[n]$, then $y_{1}[n]=h_{1}[n]$.

Thus, $y_{1}[n]=\delta[n]+2 \delta[n-1]+4 \delta[n-2]+8 \delta[n-3]$

c) $h_{2}[n]=b_{0} \delta[n]+b_{1} \delta[n-1]=\delta[n]-2 \delta[n-1]$
(simply plug in $y_{1}[n]=\delta[n]$)
d) $\quad h[n]=$ implulse response f cascade system $=h_{1}[n] * h_{2}[n]$

$$
\begin{aligned}
= & h_{2}[n] * h_{1}[n]=\sum_{k=-\infty}^{\infty} h_{2}[k] h_{1}[n-k] \\
= & h_{2}[0] h_{1}[n]+h_{2}[1] h_{1}[n-1] \\
= & h_{1}[n]-2 h_{1}[n-1] \\
= & (\delta[n]+2 \delta[n-1]+4 \delta[n-2]+8 \delta[n-3]+16 \delta[n-4]+32 \delta[n-5] \\
& -2(\delta[n-1]+2 \delta[n-2]+4 \delta[n-3]+8 \delta[n-4]+16 \delta[n-5]+32 \delta[n-0) \\
= & \delta[n]-64 \delta[n-6]
\end{aligned}
$$

