PROBLEM:

A linear time-invariant discrete-time system is described by the difference equation

$$
y[n]=3 x[n]-2 x[n-1]+2 x[n-2]-3 x[n-4] .
$$

(a) Draw a block diagram that represents this system in terms of unit-delay elements, coefficient multipliers, and adders.
(b) Determine the impulse response $h[n]$ for this system. Express your answer as a sum of scaled and shifted unit impulse sequences.
(c) Use convolution to determine the output due to the input

$$
x[n]=\delta[n]+2 \delta[n-1]+\delta[n-2]
$$

Plot the output sequence $y[n]$ for $-3 \leq n \leq 10$.
(d) Now consider another LTI system whose impulse response is

$$
h_{d}[n]=\delta[n]+2 \delta[n-1]+\delta[n-2] .
$$

Use convolution again to determine $y_{d}[n]=x_{d}[n] * h_{d}[n]$, the output of this system when the input is

$$
x_{d}[n]=3 \delta[n]-2 \delta[n-1]+2 \delta[n-2]-3 \delta[n-4] .
$$

How does your answer compare to the answer in part (c)? This example illustrates the general commutative property of convolution; i.e., $x[n] * h[n]=h[n] * x[n]$.

Part A

Part B

Plugging $x[n]=\delta[n]$ into the difference equations yields the output

$$
h[n]=3 \delta[n]-2 \delta[n-1]+2 \delta[n-2]-3 \delta[n-4]
$$

Part C

$$
\begin{aligned}
y[n]= & x[n] * h[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k] \\
= & \sum_{k=0}^{2} x[k] h[n-k] \quad(\text { since } x[k]=0 \text { for } k<0 \text { and } k>2) \\
= & x[0] h[n]+x[1] h[n-1]+x[2] h[n-2]=h[n]+2 h[n-1]+h[n-2] \\
= & 3 \delta[n]-2 \delta[n-1]+2 \delta[n-2]-3 \delta[n-4]+ \\
& 6 \delta[n-1]-4 \delta[n-2]+4 \delta[n-3]-6 \delta[n-5]+ \\
& 3 \delta[n-2]-2 \delta[n-3]+2 \delta[n-4]-3 \delta[n-6] \\
= & 3 \delta[n]+4 \delta[n-1]+\delta[n-2]+2 \delta[n-3]-\delta[n-4]-6 \delta[n-5]-3 \delta[n-6]
\end{aligned}
$$

Part D

$$
\begin{aligned}
y_{d}[n] & =x_{d}[n] * h_{d}[n]=\sum_{k=-\infty}^{\infty} x_{d}[k] h_{d}[n-k] \\
& =\sum_{k=0}^{4} x_{d}[k] h_{d}[n-k] \quad\left(\text { since } x_{d}[k]=0 \text { for } k<0 \text { and } k>4\right) \\
& =x_{d}[0] h_{d}[n]+x_{d}[1] h_{d}[n-1]+x_{d}[2] h_{d}[n-2]+x_{d}[3] h_{d}[n-3]+x_{d}[4] h_{d}[n-4] \\
& =3 h_{d}[n]-2 h_{d}[n-1]+2 h_{d}[n-2]-3 h_{d}[n-4] \\
& =3(\delta[n]+2 \delta[n-1]+\delta[n-2])-2(\delta[n-1]+2 \delta[n-2]+\delta[n-3])+ \\
& 2(\delta[n-2]+2 \delta[n-3]+\delta[n-4])-3(\delta[n-4]+2 \delta[n-5]+\delta[n-6]) \\
& =3 \delta[n]+4 \delta[n-1]+\delta[n-2]+2 \delta[n-3]-\delta[n-4]-6 \delta[n-5]-3 \delta[n-6] \\
& =\text { Same answer as part (c). }
\end{aligned}
$$

