PROBLEM:

The following problem considers three different discrete-time systems. In each case, the input is $x[n]$ and the output is $y[n]$.
(a) If an LTI system has impulse response $h[n]=\frac{3}{4} \delta[n]-\frac{1}{2} \delta[n-1]+2 \delta[n-2]$, determine the difference equation that relates $x[n]$ and $y[n]$.

$$
y[n]=
$$

(b) If an LTI system is described by the block diagram below

where $b_{0}=1, b_{1}=0, b_{2}=\frac{1}{2}, b_{3}=\frac{1}{2}$, determine its impulse response $h[n]$.

$$
h[n]=
$$

(c) If a system is defined by the relation

$$
y[n]=x\left[n^{2}\right]+(x[n-1])^{2},
$$

indicate which of the statements below is true or false by circling the appropriate T or F .
i. The system is linear. T or F
ii. The system is time-invariant. T or F
iii. The system is causal. T or F

The following problem considers three different discrete-time systems. In each case, the input is $x[n]$ and the output is $y[n]$.
(a) If an LTI system has impulse response $h[n]=\frac{3}{4} \delta[n]-\frac{1}{2} \delta[n-1]+2 \delta[n-2]$, determine the difference equation that relates $x[n]$ and $y[n]$.

$$
\begin{aligned}
y[n] & =\frac{3}{4} \times[n]-\frac{1}{2} \times[n-1]+2 \times[n-2] \\
b_{k} & =\left\{\frac{3}{4},-\frac{1}{2}, 2\right\} \text { from } h[n]
\end{aligned}
$$

(b) If an LTI system is described by the block diagram below

where $b_{0}=1, b_{1}=0, b_{2}=\frac{1}{2}, b_{3}=\frac{1}{2}$, determine its impulse response $h[n] .=\sum_{K=0}^{M} b_{\boldsymbol{K}} \delta[n-k]$ $h[n]=\delta[n]+\frac{1}{2} \delta[n-2]+\frac{1}{2} \delta[n-3]$
(c) If a system is defined by the relation

$$
y[n]=x\left[n^{2}\right]+(x[n-1])^{2},
$$

indicate which of the statements below is true or false by circling the appropriate T or F .
i. The system is linear. T or F
ii. The system is time-invariant. T or F
iii. The system is causal. T or F

$$
\begin{aligned}
& \text { If } x[n]=\delta[n], y[n]=\delta[n]+\delta[n-1] \\
& x[n]=2 \delta[n] \rightarrow y[n]=2 \delta[n]+4 \delta[n-1] \\
& x[n]=\delta[n+1] \rightarrow y[n]=0+\delta[n] \\
& x[n]=\delta[n-1] \rightarrow y[n]=\delta[n+1]+\delta[n-1]+\delta[n-2]
\end{aligned}
$$

