

PROBLEM:

The diagram in Fig. 1 depicts a *cascade connection* of two linear time-invariant systems; i.e., the output of the first system is the input to the second system, and the overall output is the output of the second system.

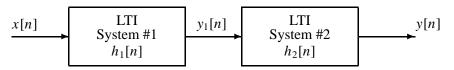


Figure 1: Cascade connection of two LTI systems.

(a) Suppose that System #1 is a "first-difference" filter described by the difference equation

$$y_1[n] = x[n] - x[n-1],$$

and System #2 is described by the impulse response

$$h_2[n] = u[n] - u[n - 10]$$

Determine the impulse response sequence, $h[n] = h_1[n] * h_2[n]$, of the overall cascade system.

(b) Obtain a single difference equation that relates y[n] to x[n] in Fig. 1.

n	0	1	2	3	4	5	6	7	8	9	10	11
$h_2[n]$	1	1	1	1	1	1	1	1	1	1		
$h_1[n]$	1	-1										
	1	1	1	1	1	1	1	1	1	1		
		-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	
h[n]	1	0	0	0	0	0	0	0	0	0	-1	

Therefore, $h[n] = \delta[n] - \delta[n-10]$.

b) Given the impulse response h[n] from a), then y[n] = x[n] - x[n-10].