PROBLEM:

The diagram in Fig. 1 depicts a cascade connection of two linear time-invariant systems; i.e., the output of the first system is the input to the second system, and the overall output is the output of the second system.

Figure 1: Cascade connection of two LTI systems.
(a) Suppose that System \#1 is a "first-difference" filter described by the difference equation

$$
y_{1}[n]=x[n]-x[n-1],
$$

and System \#2 is described by the impulse response

$$
h_{2}[n]=u[n]-u[n-10]
$$

Determine the impulse response sequence, $h[n]=h_{1}[n] * h_{2}[n]$, of the overall cascade system.
(b) Obtain a single difference equation that relates $y[n]$ to $x[n]$ in Fig. 1 .
a) The impluse response for $y_{1}[n]$ is $h_{1}[n]=\delta[n]-\delta[n-1]$ with coefficients $b_{k}=\{1,-1\}$. The coefficients for $h_{2}[n]$ are $b_{k}=\{1,1,1,1,1,1,1,1,1,1\}$. The impulse response for the overall cascade system can be tabulated as follows.

n	0	1	2	3	4	5	6	7	8	9	10	11
$h_{2}[n]$	1	1	1	1	1	1	1	1	1	1		
$h_{1}[n]$	1	-1										
	1	1	1	1	1	1	1	1	1	1		
$h[n]$		-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	
	1	0	0	0	0	0	0	0	0	0	-1	

Therefore, $h[n]=\delta[n]-\delta[n-10]$.
b) Given the impulse response $h[n]$ from a), then $y[n]=x[n]-x[n-10]$.

