PROBLEM:

Suppose that an FIR filter is specified by the filter coefficients $\left\{b_{k}\right\}=\{0,0,2,0,-1,0,2\}$.
(a) If the input signal to the filter is $x[n]=-7 \delta[n-3]$, determine the output, $y[n]$, and make a plot of the output signal.
(b) Write a short Matlab program (just a few lines) that will solve this problem and make the plot.

$$
\begin{aligned}
& X[n] \longrightarrow Y[n] \\
& \left\{b_{12}\right\}=\left\{b_{0}=0, b_{1}=0, b_{2}=2, b_{3}=0, S_{4}=-1, S_{5}=0, b_{c}=2\right\}
\end{aligned}
$$

a) Note:

$$
\begin{aligned}
& \text { a) } x[n]=\delta[n] \rightarrow \text { filter } \rightarrow y[n]=h[n]=b_{n} \\
& \text { b) } x[n]=\delta[n-3] \rightarrow \text { fort } \rightarrow y[n]=h[n-3]=b_{n-3} \\
& \text { c) } x[n]=A \delta[n-3] \rightarrow\left[f_{1} 4-r \rightarrow y[n]=A h[n-3]=A b_{n-3}\right.
\end{aligned}
$$

So if $x[n]=-7 \delta[n-3]$ then $y[n]=-7 h[n-3]$

$$
=-7 b_{n-3}
$$

$$
\Rightarrow \begin{aligned}
& y_{0}=0 \\
& y_{1}=0 \\
& y_{2}=0 \\
& y_{3}=0 \\
& y_{4}=0 \\
& y_{5}=-7 b_{5-3}=-7 b_{2}=-14 \\
& y_{6}=0 \\
& y_{7}=-7 h_{7-3}=-7 b_{4}=7 \\
& y_{8}=-7 b_{8-3}=-7 h_{5}=0 \\
& y_{9}=-7 h_{9-3}=-7 b_{6}=14
\end{aligned}
$$

b)

$$
\begin{aligned}
& \mathrm{b}=\left[\begin{array}{lllllll}
0 & 0 & 2 & 0 & -1 & 0 & 2
\end{array}\right] ; \\
& \mathrm{x}=\left[\begin{array}{llllllllllll}
0 & 0 & 0 & -7 & 0 & 0 & 0
\end{array}\right] ; \\
& \mathrm{y}=\operatorname{conv}(\mathrm{x}, \mathrm{~b})
\end{aligned}
$$

