PROBLEM:

Suppose that \mathcal{S} is a linear, time-invariant system whose exact form is unknown. It needs to be tested by running some inputs into the system, and then observing the output signals. Suppose that the following input/output pairs are the result of the tests:

$$
\begin{aligned}
x[n]=\delta[n]-\delta[n-1] & \longrightarrow y[n]=4 \delta[n]-4 \delta[n-4] \\
x[n]=\cos (\pi n / 2) & \longrightarrow y[n]=0 \\
x[n]=\cos (\pi n / 3) & \longrightarrow y[n]=6.93 \cos (\pi n / 3-\pi / 2)
\end{aligned}
$$

(a) Make a plot of the signal: $x[n]=4 \delta[n]-4 \delta[n-4]$.
(b) Use linearity and time-invariance to find the output of the system when the input is

$$
x[n]=3 \delta[n]-3 \delta[n-3]
$$

(c) Determine the output when the input is $x[n]=7 \cos (\pi(n-2) / 3)$.
(d) Determine the output when the input is $x[n]=9 \sin (\pi n / 2)$

