PROBLEM:

$$
\text { Consider a system defined by } \quad y[n]=\sum_{k=0}^{20} b_{k} x[n-k]
$$

Suppose that the input signal $x[n]$ is equal to zero for $n<100$, and also for $n>200$. Then it is possible to find regions of n where the output is guaranteed to be zero.
(a) Show that $y[n]$ is zero for $n<N_{1}$, and find the integer N_{1} for which this is true.
(If it is convenient assume that $x[n]$ is equal to one for $n=100,101,102,103, \ldots, 200$.)
(b) In addition, $y[n]$ will be zero for $n>N_{2}$. Find the integer N_{2} for which this is true.

Hints: recall the sliding window interpretation of the FIR filter. In addition, analyze the index $[n-k]$ when n is fixed and k varies over the summation range.
$y[n]=\sum_{k=0}^{20} b_{k} x[n-k]$ is guaranteed to be zero

$$
\Rightarrow \quad x[n-k]=0 \text { for } k=0,1, \cdots, 20
$$

(a)

$$
\begin{aligned}
& n-k<100 \quad \text { for } \quad k=0,1, \cdots, 20 \\
& n<100 \Rightarrow N_{1}=100
\end{aligned}
$$

(b) $n-k>200$ for $k=0,1, \cdots, 20$

$$
n>200+20 \Rightarrow N_{2}=220
$$

