PROBLEM:

A linear time-invariant system is described by the difference equation

$$
y[n]=x[n]-\beta x[n-1]
$$

(a) When the input to this system is

$$
x[n]= \begin{cases}0 & n<0 \\ \beta^{n} & n=0,1,2,3,4,5,6 \\ 0 & n>6\end{cases}
$$

Use convolution to compute the values of $y[n]$, over the range $0 \leq n \leq 10$. Give a general formula in terms of β, and also show that most of the output values are equal to zero.
(b) Use the results from the previous part and plot both $x[n]$ and $y[n]$ for the case where $\beta=\frac{1}{2}$.

$$
x[n]=\sum_{k=0}^{6} \beta^{k} \delta[n-k]
$$

$$
y[n]=x[n]-\beta x[n-1]
$$

(a) This problem is similar in computation to Problem 5.3.

$$
\begin{aligned}
y[n] & =x[n]-\beta x[n-1] \\
& =\sum_{k=0}^{6} \beta^{k} \delta[n-k]-\beta \sum_{k=0}^{6} \beta^{k} \delta[n-1-k] \\
& =\sum_{k=0}^{6} \beta^{k} \delta[n-k]-\beta \sum_{k=1}^{7} \beta^{k-1} \delta[n-k] \\
& =\delta[n]+\left(\sum_{k=1}^{6} \beta^{k} \delta[n-k]-\sum_{k=1}^{6} \beta \beta^{k-1} \delta[n-k]\right)-\beta^{7} \delta[n-7] \\
& =\delta[n]-\beta^{7} \delta[n-7]
\end{aligned}
$$

Using another approach, we can make a table that contains the values for $x[n]$ and $\beta x[n-1]$ and then subtract the results to get $y[n]=x[n]-\beta x[n-1]$:

	$n=0$	$n=1$	$n=2$	$n=3$	$n=4$	$n=5$	$n=6$	$n=7$	$n=8$	$n=9$	$n=10$
$x[n]$	1	β	β^{2}	β^{3}	β^{4}	β^{5}	β^{6}	0	0	0	0
$\beta x[n]$	0	β	β^{2}	β^{3}	β^{4}	β^{5}	β^{6}	β^{7}	0	0	0
$y[n]$	1	0	0	0	0	0	0	$-\beta^{7}$	0	0	0

(b) We plot $x[n]$ and $y[n]$ for the case of $\beta=0.5$, but notice that β^{7} is a very small number so it hardly shows up on the plot of the output signal.

INPUT SIGNAL

Code to generate this plot:

```
n = [0:10];
beta = 0.5;
x = [ beta. . (0:6), zeros (1,4) ];
y = conv(x,[1,-beta]);
y = y(1:length(n));
subplot(4,2,1),stem(n,x,'filled')
axis([-1 [11 -0.1 1.1]);
ylabel('x[n]');
title('INPUT SIGNAL')
h2 = subplot(4,2,3),stem(n,y,'filled')
axis([[-1 111 -0.1 1.1]);
xlabel('Time Index (n)'); ylabel('y[n]');
title('OUTPUT')
text(3,0.5,'y[7] = -0.0078')
h2p = get(h2,'position')
h2p(2) = h2p(2) - 0.025;
set(h2,'position',h2p)
```

