

PROBLEM:

A linear time-invariant system is described by the difference equation

$$y[n] = x[n] - \beta x[n-1]$$

(a) When the input to this system is

$$x[n] = \begin{cases} 0 & n < 0 \\ \beta^n & n = 0, 1, 2, 3, 4, 5, 6 \\ 0 & n > 6 \end{cases}$$

Use convolution to compute the values of y[n], over the range $0 \le n \le 10$. Give a general formula in terms of β , and also show that most of the output values are equal to zero.

(b) Use the results from the previous part and plot both x[n] and y[n] for the case where $\beta = \frac{1}{2}$.

$$x[n] = \sum_{k=0}^{6} \beta^k \delta[n-k]$$

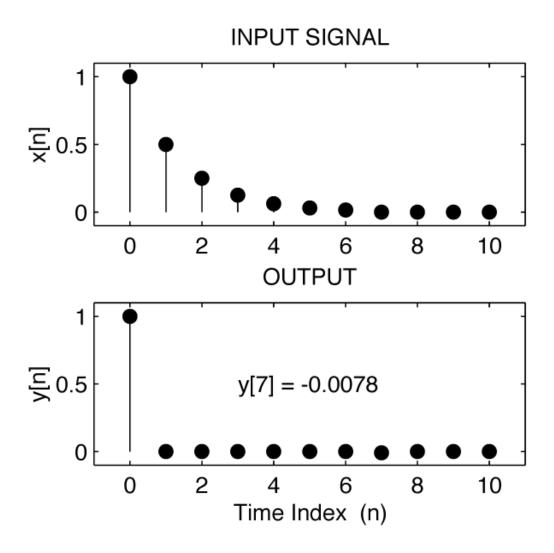
$$y[n] = x[n] - \beta x[n-1]$$

(a) This problem is similar in computation to Problem 5.3.

$$y[n] = x[n] - \beta x[n-1]$$

$$= \sum_{k=0}^{6} \beta^{k} \delta[n-k] - \beta \sum_{k=0}^{6} \beta^{k} \delta[n-1-k]$$

$$= \sum_{k=0}^{6} \beta^{k} \delta[n-k] - \beta \sum_{k=1}^{7} \beta^{k-1} \delta[n-k]$$


$$= \delta[n] + \left(\sum_{k=1}^{6} \beta^{k} \delta[n-k] - \sum_{k=1}^{6} \beta \beta^{k-1} \delta[n-k]\right) - \beta^{7} \delta[n-7]$$

$$= \delta[n] - \beta^{7} \delta[n-7]$$

Using another approach, we can make a table that contains the values for x[n] and $\beta x[n-1]$ and then subtract the results to get $y[n] = x[n] - \beta x[n-1]$:

	n = 0	n = 1	n=2	n = 3	n = 4	n = 5	n = 6	n = 7	n = 8	n = 9	n = 10
x[n]	1	β	β^2	β^3	β^4	β^5	β^6	0	0	0	0
$\beta x[n]$	0	β	β^2	β^3	β^4	β^5	β^6	β^7	0	0	0
<i>y</i> [<i>n</i>]	1	0	0	0	0	0	0	$-\beta^7$	0	0	0

(b) We plot x[n] and y[n] for the case of $\beta = 0.5$, but notice that β^7 is a very small number so it hardly shows up on the plot of the output signal.

Code to generate this plot:

```
n = [0:10];
beta = 0.5;
x = [beta .^{(0:6)}, zeros(1,4)];
y = conv(x,[1,-beta]);
y = y(1:length(n));
subplot(4,2,1),stem(n,x,'filled')
axis([-1 11 -0.1 1.1]);
ylabel('x[n]');
title('INPUT SIGNAL')
h2 = subplot(4,2,3), stem(n,y,'filled')
axis([-1 11 -0.1 1.1]);
                    (n)'); ylabel('y[n]');
xlabel('Time Index
title('OUTPUT')
text(3,0.5,'y[7] = -0.0078')
h2p = get(h2, 'position')
h2p(2) = h2p(2) - 0.025;
set(h2, 'position', h2p)
```