

PROBLEM:

This problem is concerned with finding the output of an FIR filter for a given input signal. A linear time-invariant system is described by the difference equation

$$y[n] = \sum_{k=0}^{3} (0.5)^{k} x[n-k]$$

- (a) Determine the filter coefficients $\{b_k\}$ of this FIR filter.
- (b) Find the impulse response, *h*[*n*], for this FIR filter. The impulse response is a discrete-time signal, so make a (stem) plot of *h*[*n*] versus *n*.
- (c) Use the above difference equation to compute the output y[n] when the input is

$$x[n] = \begin{cases} 0 & n < 0\\ (n+1) & 0 \le n \le 4\\ -4 & 5 \le n \le 10\\ 0 & n \ge 11. \end{cases}$$

Make a plot of both x[n] and y[n] vs. n. (Hint: you might find it useful to check your results with MATLAB's conv() function.)

McClellan, Schafer and Yoder, Signal Processing First, ISBN 0-13-065562-7. Prentice Hall, Upper Saddle River, NJ 07458. © 2003 Pearson Education, Inc.

McClellan, Schafer, and Yoder, Signal Processing First, ISBN 0-13-065562-7. Prentice Hall, Upper Saddle River, NJ 07458. © 2003 Pearson Education, Inc.

The difference equation can be evaluated easily by using					
G	chert.	y[n] = x(n)	+之又[17-1]+	女x[n-2]	+ = x[n-3]
n	x[n]	±×[n−1]	☆x(n-2)	\$x[1-3]	ym
0	. 1	0	5	0	·
	2	士	0	6	マモ
2	3	1	14	0	4.4
3	4	3/2	Y2	1/8	68
4	5	2	3/4	1/4	8
5	-4	5/2	1	3/8	-1-90
6	-4	-2	5/4	1/2	-44
7	-4	-2	-1	2/8	-6 ³ /8
8	-4	-2	-1	-±	-72
9	-4	-2	-1	-2	-72
10	-4	-2	-1	-12	-72
41	0	-2	-1	-2	- 32
(2	0	0	-1	-12	- 12
13	0	0	0	- 2	- 12
14	0	0	0	0	