PROBLEM:

For each of the following systems, determine if they are (1) linear; (2) time-invariant; (3) causal.

- (a) v[n] = x[n-2] + 2x[n] + x[n+2]
- (b) y[n] = nx[n]
- (c) $y[n] = (x[-n])^2$

McClellan, Schafer and Yoder, Signal Processing First, ISBN 0-13-065562-7. Prentice Hall, Upper Saddle River, NJ 07458. © 2003 Pearson Education, Inc.

(a)
$$y[n] = x[n-2] + 2x[n] + x[n+2]$$

This has the same form as an FIR filter with multiplies, adds and delays, so it is also LINEAR and TIME-INV.

It is <u>NOT</u> <u>CAUSAL</u>. Here is a counter-example:

Let x[n] = S[n] = - this input starts at n=0.

Then ym= 6[n-2]+28[n]+8[n+2]

This output starts at n=-2, so it starts before the input => NON-CAUSAL

(b) y[n] = nx[n]

CAUSAL? Yes $y[n_0] = n_0 \times [n_0]$ means that $y[n_0]$ depends only on the input at $n = n_0$.

LINEAR? Yes

$$y_1[n] = nx_1[n]$$

Tf $x[n] = \alpha x_1[n] + \beta x_2[n]$ then

 $y_2[n] = nx_2[n]$
 $y(n) = n(\alpha x_1[n] + \beta x_2[n])$
 $= \alpha(nx_1[n]) + \beta(nx_2[n])$
 $= \alpha y_1[n] + \beta y_2[n]$

TIME-INY? NO

When the input is $x[n] = \delta[n]$, the output is $y[n] = nx[n] = n\delta[n] = 0$ for all n.

when the input is a "skifted impulse", e.g. $x_1[n] = \delta[n-1]$ then the output is $y_1[n] = n \delta[n-1] = 1 \cdot \delta[n-1]$

But yilling is not the shifted version of yill because yilling + y[n-1]

LINEAR? NO

$$y_1[n] = (x_1[-n])^2$$

 $y_2[n] = (x_2[-n])^2$

If
$$x[n] = \alpha x_1[n] + \beta x_2[+n]$$
 then

 $y[n] = (x[-n])^2 = (\alpha x_1[-n] + \beta x_2[-n])^2$
 $= \alpha^2(x_1[-n])^2 + 2\alpha\beta x_1[-n] \times_2[-n] + \beta^2(x_2[-n])^2$
 $\neq \alpha(x_1[-n])^2 + \beta(x_2[-n])^2$

TIME-INY? NO

Let $x[n] = \delta[n-1]$, then the output is $y[n] = (\delta[-n-1])^2$. Since the system flips the input and squares the output is $y[n] = \delta[n+1] = \frac{5AME}{2}$

Now shift the input: $x_2[n] = x[n-1] = \delta[n-2]$. The output is $y_2[n] = (\delta[-n-2])^2 = \delta[n+2]$ An impulse at n=-2. But $y_2[n] \neq y[n-1]$ because $y[n-1] = \delta[n-1+1] = \delta[n]$.

CAUSAL? NO

If $x[n] = \delta[n-7]$, then $y[-7] = (x[-(-7)])^2 = (x[7])^2 = 1$ So the output at n=-7, needs a value from the future.