PROBLEM:

$$
y[n]=\sum_{k=5}^{10} b_{k} x[n-k]
$$

Notice that the filter coefficients $b_{0}, b_{1}, b_{2}, \ldots, b_{4}$ are all zero.
Suppose that the input $x[n]$ is non-zero only for $5 \leq n \leq 20$. Show that $y[n]$ is non-zero at most over a finite interval of the form $N_{3} \leq n \leq N_{4}$. Determine N_{3} and N_{4}.

Hint: consult Figs. 5.5 and 5.6 in the book for the sliding window interpretation of the FIR filter.

We can view bk as a n sequence $b[n]$
$x[n]$

$$
y[n]=\sum_{k=5}^{10} b[k] x[n-k]
$$

Using graphical convolution we observe that alignments where $n \leqslant 9$, non-3ero samples du not overlap. $\therefore y[n]=0, n \leqslant 9 \quad y[n]$ cen be $n m$-zero in the
Similarly for $n \geqslant 31, y[n]=0$

$$
\therefore \quad N_{3} \leqslant n \leqslant N_{4} \text { range }
$$

$$
10 \leq n \leq 30
$$

