PROBLEM:

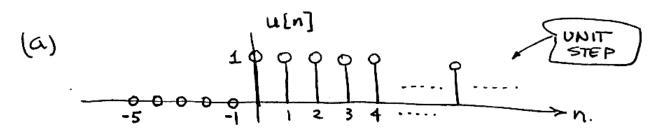
Evaluate the "running" average:

$$y[n] = \frac{1}{L} \sum_{k=0}^{L-1} x[n-k]$$

for a specific input signal—a signal that turns on at n = 0. This is called the *unit step* signal, and is usually denoted by u[n].

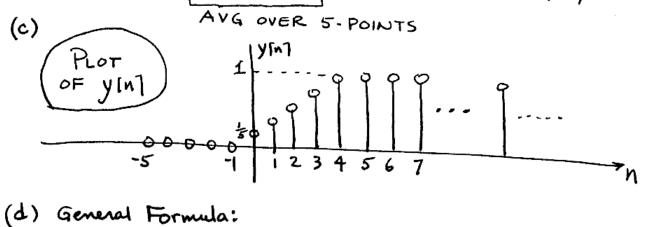
$$x[n] = u[n] = \begin{cases} 0 & \text{for } n < 0 \\ 1 & \text{for } n \ge 0 \end{cases}$$

- (a) Make a plot of u[n] before working out the answer for y[n].
- (b) Now compute the numerical values of y[n] over the range $-5 \le n \le 10$, assuming that L = 5.
- (c) Make a sketch of the output for both over the range $-5 \le n \le 10$, assuming that L = 5. Use MATLAB if necessary, but learn to do it by hand also.
- (d) Finally, derive a general formula for y[n] that will apply for any length L and for the index range n > 0.



(b) L=5 => avg. 5 points Make table:

<u>n</u>	-5	-4	-3	-2	-1	0	1	2	3	4	5	61	7	8	9	10
×[n]=u[n]	0	0	٥	0	٥	-	1	1	ı	١	1	11	1	1		
x[n]=u[n]	٥	0	0	0	0	5	215	3/5	45	1	١	1	1	1	-	1



(d) General Formula:

we need a "piecewise" definition

$$y[n] = \begin{cases} 0, & \text{for } n < 0 \\ \frac{1}{5}(n+1), & \text{for } 0 \le n < 4 \end{cases}$$

$$1, & \text{for } n \ge 4$$