PROBLEM:

Evaluate the "running" average:

$$
y[n]=\frac{1}{L} \sum_{k=0}^{L-1} x[n-k]
$$

for a specific input signal-a signal that turns on at $n=0$. This is called the unit step signal, and is usually denoted by $u[n]$.

$$
x[n]=u[n]= \begin{cases}0 & \text { for } n<0 \\ 1 & \text { for } n \geq 0\end{cases}
$$

(a) Make a plot of $u[n]$ before working out the answer for $y[n]$.
(b) Now compute the numerical values of $y[n]$ over the range $-5 \leq n \leq 10$, assuming that $L=5$.
(c) Make a sketch of the output for both over the range $-5 \leq n \leq 10$, assuming that $L=5$. Use Matlab if necessary, but learn to do it by hand also.
(d) Finally, derive a general formula for $y[n]$ that will apply for any length L and for the index range $n \geq 0$.
(a)

(b) $L=5 \Rightarrow$ avg. 5 points

Make table:

n																
$x[n]=u[n]$	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1
$y[n]$	0	0	0	0	0	$\frac{1}{5}$	$\frac{2}{5}$	$\frac{3}{5}$	$\frac{4}{5}$	1	1	1	1	1	1	1
(c)																

(c)

(d) General Formula:
we need a "piecewise" definition

$$
y[n]=\left\{\begin{array}{cc}
0, & \text { for } n<0 \\
\frac{1}{5}(n+1), & \text { for } 0 \leq n<4 \\
1, & \text { for } n \geq 4
\end{array}\right.
$$

