## PROBLEM:

For a particular linear time-invariant system, when the input is

$$
x_{1}[n]=4 u[n]= \begin{cases}0 & n<0 \\ 4 & n \geq 0\end{cases}
$$

the corresponding output is

$$
y_{1}[n]=\delta[n]+2 \delta[n-1]+3 \delta[n-2]+4 u[n-3]= \begin{cases}0 & n<0 \\ 1 & n=0 \\ 2 & n=1 \\ 3 & n=2 \\ 4 & n \geq 3\end{cases}
$$

(a) Using the concepts of linearity and time-invariance, determine the impulse response of the system.
(b) The system is an FIR filter-determine the filter coefficients and the length of the filter.
(c) State a general procedure for deriving the impulse response of a LTI system from a measurement of its step response, i.e., if $s[n]$ is the step response of a LTI system, what simple operations can be done to $s[n]$ to produce the impulse response $h[n]$.
(d) Using the concepts of linearity and time-invariance, determine the output signal when the input signal is $x_{2}[n]=7 u[n-1]-7 u[n-4]$. Give your answer as a formula expressing $y_{2}[n]$ in terms of known sequences or as an equation for each value of $y_{2}[n]$ for $-\infty<n<\infty$.
(a) $x_{1}[n] \longrightarrow y_{1}[n]$ is a known input-output pair we need to express $\delta[n]$ in terms of $x_{1}[n]$ which means we are allowed to shift and scale $x_{1}[n]$ to create $\left.\delta i n\right]$. In other words, can we find $\alpha_{1}, n_{1}, \alpha_{2}$ and $n_{2}$ so that

$$
\delta[n] \stackrel{?}{=} \alpha_{1} X_{1}\left[n-n_{1}\right]+\alpha_{2} X_{1}\left[n-n_{2}\right]
$$

Maybe it is easiest to see from plots. Make a plot of $x_{1}[n]$


Make a plot $x_{1}[n]$ shifted by one (delay).


If we want to combine these two plots to get $\delta[n]$


Then, clearly we need to subtract, and divide by 4 .
Thus $\delta[n]=\frac{1}{4} x_{1}[n]-\frac{1}{4} x_{1}[n-1]$

Prob (cont)
( $a$, cont) Now we can use linearity
If $\delta[n]=\frac{1}{4} x_{1}[n]-\frac{1}{4} x_{1}[n-1]$
then $h[n]=\frac{1}{4} y_{1}[n]-\frac{1}{4} y_{1}[n-1]$
Because

$$
x_{1}[n] \longrightarrow y_{1}[n]
$$

$$
x_{1}[n-1] \rightarrow y_{1}[n-1]
$$

make a table to compute $h[n]$.

| $n$ | $n<0$ | 0 | 1 | 2 | 3 | 4 | $n \geq 5$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $y_{1}[n]$ | 0 | 1 | 2 | 3 | 4 | 4 | 4 |
| $y_{1}[n-1]$ | 0 | 0 | 1 | 2 | 3 | 4 | 4 |
| $n[n]$ | 0 | $1 / 4$ | $1 / 4$ | $1 / 4$ | $1 / 4$ | 0 | 0 |

$$
C_{n[n]=\frac{1}{4}(3)-\frac{1}{4}(2)=\frac{3}{4}-\frac{1}{2}=\frac{1}{4}, ~}^{1}
$$

(b) For an FIR filter the impulse response will "read out" the coefficients.

$$
\Rightarrow\left\{b_{k}\right\}=\left\{\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right\} \quad L=4 \text { is } \underset{\text { FILTER }}{\text { LENGTH }}
$$

(c) Since $\delta[n]=u[n]-u[n-1]$, if we have the step response $s[n]$, the impulse response $h[n]$ can be constructed via: $h[n]=s[n]-s[n-1]$.
(d) Write $x_{2}[n]$ in terms of $x_{1}[n]$

$$
\begin{aligned}
& x_{2}[n]=\frac{7}{4} x_{1}[n-1]-\frac{7}{4} x_{1}[n-4] . \\
\Rightarrow & y_{2}[n]=7 / 4 y_{1}[n-1]-7 / 4 y_{1}[n-4]
\end{aligned} \sim \text { USING L.T.I. }
$$

make a table

| $\frac{n}{y_{1}[n-1]}$ | 0 | 0 | 1 | 2 | 3 | 4 | 4 | 4 | 4 | 4 | $4 \ldots$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $y_{1}[n-4]$ | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 3 | 4 | 4 | $4 \ldots$ |
| $y_{2}[n]$ | 0 | 0 | $\frac{7}{4}$ | $\frac{7}{2}$ | $\frac{21}{4}$ | $\frac{21}{4}$ | $\frac{7}{2}$ | $\frac{7}{4}$ | 0 | 0 | $0 \ldots$ |

