

PROBLEM:

For a particular linear time-invariant system, when the input is

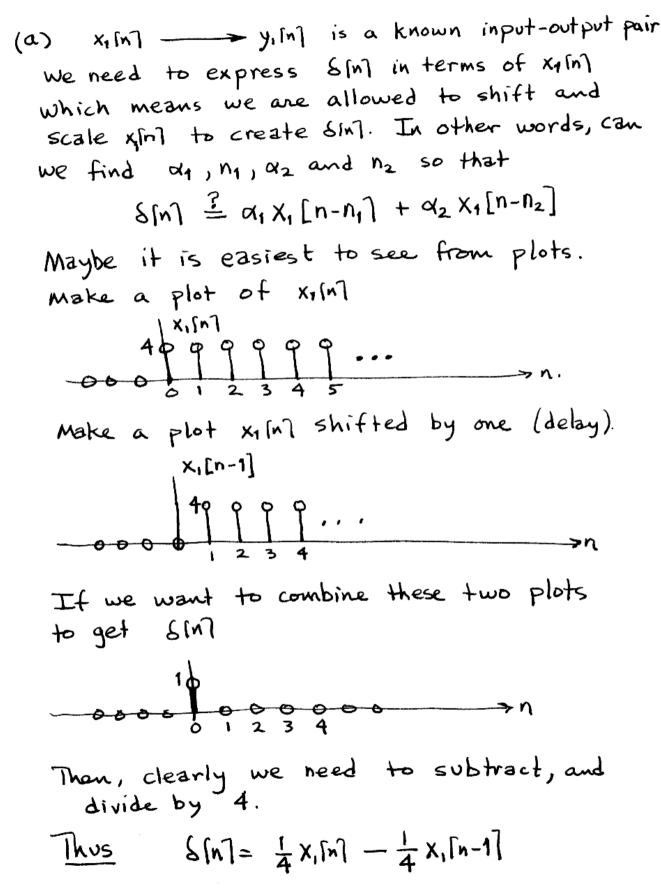
$$x_1[n] = 4u[n] = \begin{cases} 0 & n < 0 \\ 4 & n \ge 0 \end{cases}$$

the corresponding output is

$$y_1[n] = \delta[n] + 2\delta[n-1] + 3\delta[n-2] + 4u[n-3] = \begin{cases} 0 & n < 0\\ 1 & n = 0\\ 2 & n = 1\\ 3 & n = 2\\ 4 & n \ge 3 \end{cases}$$

(a) Using the concepts of linearity and time-invariance, determine the impulse response of the system.

- (b) The system is an FIR filter—determine the filter coefficients and the length of the filter.
- (c) State a general procedure for deriving the impulse response of a LTI system from a measurement of its step response, i.e., if s[n] is the step response of a LTI system, what simple operations can be done to s[n] to produce the impulse response h[n].
- (d) Using the concepts of linearity and time-invariance, determine the output signal when the input signal is $x_2[n] = 7u[n-1] 7u[n-4]$. Give your answer as a formula expressing $y_2[n]$ in terms of known sequences or as an equation for each value of $y_2[n]$ for $-\infty < n < \infty$.



 $\Rightarrow \{b_k\} = \{\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\} \quad L=4 \text{ is FILTER} \\ LENGTH$

(c) since $\delta(n] = u[n] - u[n-1]$, if we have the step response s[n], the impulse response h[n]can be constructed via: h[n] = s[n] - s[n-1].

(d) Write
$$x_2[n]$$
 in terms of $x_1[n]$
 $x_2[n] = \frac{2}{4}x_1[n-1] - \frac{2}{4}x_1[n-4]$.
 $\Rightarrow y_2[n] = \frac{7}{4}y_1[n-1] - \frac{7}{4}y_1[n-4]$
MAKE A TABLE

n \	ncol	0	11	2	3	4	5	6	7	8	n≥9
y,[n-1]	0	D		2	3	4	4	4	4	4	4
Y1[n-4]	0	0	D	0	0	1	2	3	4	4	4
421n7	0	0	74	712	21 4	21 4	712	74	0	0	0