PROBLEM:

The diagram in Fig. 1 depicts a cascade connection of two linear time-invariant systems; i.e., the output of the first system is the input to the second system, and the overall output is the output of the second system.

Figure 1: Cascade connection of two LTI systems.
Suppose that System \#1 has impulse response,

$$
h_{1}[n]= \begin{cases}0 & n<0 \\ 1 & n=0 \\ -1 & n=1 \\ 0 & n>1\end{cases}
$$

and System \#2 is described by the difference equation

$$
\begin{equation*}
y[n]=0.25 v[n]+0.25 v[n-1]+0.25 v[n-2]+0.25 v[n-3] \tag{1}
\end{equation*}
$$

(a) Determine the difference equation of System $\# 1$; i.e., the equation that relates $v[n]$ to $x[n]$.
(b) When the input signal $x[n]$ is an impulse, $\delta[n]$, determine the signal $v[n]$ and make a plot. Show that the resulting output is the given impulse response $h_{1}[n]$.
(c) From the difference equation in (1), determine $h_{2}[n]$, the impulse response of System \#2.
(d) Determine the impulse response of the overall cascade system, i.e., find $y[n]$ when $x[n]=\delta[n]$.
(e) From the impulse response of the overall cascade system as obtained in part (d), obtain a single difference equation that relates $y[n]$ directly to $x[n]$ in Fig. 1 .
a)

$$
\begin{aligned}
& h_{1}[n]=\delta[n]-\delta[n-1] \\
& v[n]=x[n]-x[n-1]
\end{aligned}
$$

b)

Let $x[n]=\delta[n]$. Then $v[n]=\delta[n]-\delta[n-1]$

c) Let $v[n]=\delta[n]$ then $y[n]=\frac{1}{4} \delta[n]+\frac{1}{4} \delta[n-1]+\frac{1}{4} \delta[n-2]+\frac{1}{4} \delta(n-3]$
d) The impulse response associated with the cascade implies that $x[n]=\delta[n]$, which results in $V[n]=\delta[n]-\delta[n-1]$. Using this $v[n]$ as input to system 2, we obtain

$$
\begin{aligned}
& y[n]=\frac{1}{4} \delta[n]+\frac{1}{4} \delta[n-1]+\frac{1}{4} \delta[n-2]+\frac{1}{4} \delta[n-3] \\
& \therefore y[n]=\frac{1}{4} \delta(n]-\frac{1}{4} \delta[n-4]-\frac{1}{4} \delta[n-2]-\frac{1}{4} \delta[n-3]-\frac{1}{4} \delta[n-4] \\
& \therefore y
\end{aligned}
$$

e) $y[n]=\frac{1}{4} x[n]-\frac{1}{4} x[n-4]$

