
A Workflow Model for Earth Observation Sensor
Webs

Robert Morris
Jennifer Dungan

NASA Ames Research Center
Moffett Field, California

Email: robert.a.morris@nasa.gov, jennifer.l.dungan@nasa.gov

Petr Votava
California State University, Monterey Bay

NASA Ames Research Center
Moffett FIeld, CA

Email:petr.votava@nasa.gov

Abstract—An Earth sciencesensor webconsists of a distributed
collection of sensors, Earth science models, human scientists and
information technologists, and data archives. The scientific use
of the sensor web consists broadly of seeking to improve the
understanding of natural processes occurring on the Earth’s
surface or in the atmosphere. Sensor measurements serve to
quantify aspects of these processes that allow Earth science
models to make predictions of scientific and social value. The
management problem for sensor webs considered here is the
problem of reconfiguring the sensor web in order to answer new
science questions. The notion of reconfiguration is used broadly
here to describe a set of actions for retargeting sensors, querying
databases for image data, or executing functions for analyzing
acquired data. This paper describes a workflow model and
architecture for a workflow management system for reconfiguring
sensor webs.

Index Terms—Sensor Webs, Workflow Management System

I. I NTRODUCTION

An Earth sciencesensor webconsists of a distributed
collection of sensors, Earth science models, human scientists
and information technologists, and data archives. Sensorsin
a sensor web will typically vary with respect to the type of
observations they make and with respect to the platform on
which they reside: the platform can be fixed or mobile, ground-
based, airborne, space-borne, etc.

The scientific use of the sensor web consists broadly of
seeking to improve the understanding of natural processes
occurring on the Earth’s surface or in the atmosphere. Sensor
measurements serve to quantify aspects of these processes that
allow Earth science models to make predictions of scientific
and social value. Other measurements are intended to improve
the cohesion or consistency of the data of the sensor web itself:
for example, measurements from one sensor can be used to
validate observations taken by another.

The management problem for sensor webs considered here
is the problem ofreconfiguring the sensor web in order to
answer new science questions. We use the notion of recon-
figuration broadly to describe a set of actions for retargeting
sensors, querying databases for image data, or executing
functions for analyzing acquired data. Because the resources of
a web are distributed, reconfiguration is partly a coordination
problem that happens continuously. Sometimes, sensor web re-
configuration occurs at measured intervals, e.g. daily, as during

a field campaign [9]. In other contexts, the web is reconfigured
on demand, for example, in response to a significant event.

Currently, reconfiguring a sensor web is primarily conducted
by humans, with varying degrees of automation. Human exper-
tise in Earth science sensor web management comes in three
broad types:scientificexpertise to formulate requirements for
observation,data managementexpertise to collect the data
and set up and execute processing tasks andmission planning
expertise for setting up and scheduling the sensing platforms
to take measurements.

Much of the reconfiguration tasks performed by humans is
tedious and time-consuming, and could be more effectively
performed by machines. Recent advances in software automa-
tion can be applied to improving sensor web management by

• Making the web moregoal-directed. If reconfiguration
is directly tailored to specific science goals, the data
acquired will be of more scientific value.

• Promotingabstraction. Humans can formulate goals at a
high level, and the automated system will automatically
work out the details in how to accomplish them.

• Making the web morerobust. Unexpected changes to the
sensor web that hinder its ability to be reconfigured in
a planned way can be diagnosed and an alternative con-
figuration that satisfies the same goals can be generated
automatically.

This paper describes an approach to sensor web reconfigu-
ration using workflows. Section 2 provides an overview of an
architecture for sensor web management. Section 3 describes
the processes and models for constructing workflows. Section
4 describes a model and process for automatically executing
workflows. Section 5 describes the current state and future
enhancements of the system.

II. WORKFLOW MANAGEMENT FOR EARTH OBSERVATION

DATA

A workflow is a specification of the data and control flow
used to acquire and process data to accomplish a science or
disaster mitigation goal. Most definitions distinguish between
abstract and concreteworkflows, depending on whether the
services to be used are included in the specification. Aservice
is any remotely accessible capability for transforming a set
of inputs into outputs. Services are invoked from a client on

remote hosts using a remote invocation methods and protocols
such as SOAP or Java/RMI. Services provide a layer between
applications that use resources like sensors or data archives
and the resources themselves. Aworkflow management system
(WMS) is a set of software tools for defining, managing and
executing workflows on a set of distributed resources.

NASA faces unique challenges in building tools to support
the understanding of Earth processes that requires a concept of
workflow that is similar to, but also different from, the notions
of computational workflow for science [2] or workflows used
for business practices [3]. NASA’s unique role in conducting
science, as well as engineering and operating the sensing
resources used for conducting the science, implies that a
workflow concept for NASA must simultaneously address the
knowledge aspect (what questions related to science or disaster
mitigation need to be answered through the acquisition and
processing of data); the engineering aspect (what resources
should be assigned to address the question); and the operations
aspect (how do the assigned resources need to be reconfigured
to acquire the needed data).

Typically, a WMS is defined as having two parts: a build
tool and a run-time tool. The build tool consists of the software
components and representations required to define and build
workflows. The run-time tool consists of the software com-
ponents and representations required to execute workflows.
Workflows are executed by invoking services that access sen-
sor web resources. Therefore, the WMS requires an interface
to the web service layer.

A. Architecture

Figure 1 illustrates the architecture for the WMS described
in this paper. The capabilities and models identified in the fig-
ure are described in detail below. The WMS build tool consists
of a goal specification tool, an abstract workflow generator
and aconcrete workflow generator. The WMS run-time tool
consists of anexecutive, a web managerand a collection of
providers. The process of generating and executing workflows
can be visualized by reading the figure from top to bottom.
Human users defineEarth observation goalswith the aid
of a goal specification tool and a goal library. The goal is
transformed, either automatically using anabstract workflow
generatoror with human assistance, into anabstract workflow
along with a collection of parameters that constrain the goal.
Next, a concrete workflow generatortransforms the abstract
workflow into an executable concrete workflow, consisting of
a state transition networkand anaction mapping table. The
concrete workflow is executed automatically by anexecutive,
which continuously updates theworkflow state information. A
workflow is executed by submittingweb resource requeststo
the web managers, which is comprised of sub-managers for
acquiring, processing and storing data. The appropriate sub-
manager relays each request to the appropriateprovider that
in turn manage the interactions with the remote services that
process the request. Finally, the services are directly accessed
via ”plug-ins”, service invocation software functions associ-
ated with interface specification protocols, such as Sensor

Observation Service (Part of the Open Geospatial Consortium
specifications) [1].

B. Terrestrial Observation and Prediction System

The Terrestrial Observation and Prediction System (TOPS).
TOPS [5] is being used as a testbed for the design and
testing of the ideas presented in this paper. TOPS is a
data and modeling software system designed to seamlessly
integrate data from satellite, aircraft, and ground sensors with
weather/climate and application models to produce operational
’nowcasts’ and forecasts of ecological conditions [5]. TOPS
provides instances of data, processing and storage providers
invoked by the web managers to execute workflow actions.
The examples of Earth science goals and workflows described
in this paper are based on scenarios for data acquisition and
processing used in TOPS.

III. B UILDING WORKFLOWS

We introduce a process-based language for workflows with
a graphical front end for specifying high level goals that
correspond to them. We distinguish between three levels of
abstraction in the process of building workflows: thegoal
level, theabstract workflow leveland theconcrete workflow
level. The latter distinction is common in the terminology of
workflows, but the goal level is introduced as a “scientist’s
view” of workflows.

A. Goal Specification

In order to simplify the process of programming the sensor
web, it should be possible to describe a data acquisition
workflow in a simple, intuitive way. There are two kinds
of workflow specification languages: script-based (GridAnt,
BPEL4WS) and graph-based (Symphony, DAGman Tool).
Script-based languages are typically expressive enough to
represent complex workflows but are often hard to use for
non-programmers. Graph-based languages are easy to use
and intuitive, but sometimes it is hard to express complex
workflows using them.

We introduce a graphical Earth science goal specification
language to represent Earth science goals as a scientist would
tend to represent them. The language is based on a simple tax-
onomy of goal types and enables the expression of parameters
that characterize the constraints on a desired data product, as
well as simple rules for composing goals out of others.

The goal language is implemented using Cmap Tools [7].
Concept maps are graphical representations of knowledge in
the form of concepts, joined graphically by links to express
propositions. Concept maps were developed in the 1970s to
track the progress of learning scientific knowledge by elemen-
tary students.Cmap Toolsis a concept mapping suite devel-
oped at Institute of Human and Machine Cognition (IHMC).
The tool possesses features to enable real-time collaboration,
sharing, reuse of concept maps. Concept maps are used here
to define the parameters and constraints on workflows used to
acquire and process Earth observation data.

Parameter

Table

Concrete
Workflow
Generator

Libraries and Registries

Abstract

Workflow

Data
Provider
Registry

Service
Provider
Registry

Abstract
Workflow
Generator

Goal
Specification Tool

 Web Manager

Data
Manager

Service
Manager

Storage
Manager

Data
ProviderData
ProviderData
Provider

Service
ProviderService
ProviderService
Provider

Storage
ProviderStorage
ProviderStorage
Provider

Executive

TOPS Data
Plugin

SOS Data
Plugin ECHO Data

Plugin

TOPS Service
Plugin

Workflow
Library

Earth

Observation

Goal

Goal
Library

State Transition Network

Workflow

State Information

Web Resource

Request

Fig. 1. Workflow Management System (WMS) architecture. The build tool consists of the goal specification tool, the abstract workflow generator, and
the concrete workflow generator. The run-time tool consistsof the executive, the web managers and the data, service and storage providers. The WMS is
connected by the providers to a set of plug-ins to the servicelayer for accessing resources.

An Earth sciencegoal specificationdefines an Earth science
goal as a set ofproperty/value pairsthat characterize a desired
data product. We use concept maps called Cmaps [6] to
visualize a goal specification as a collection of labeled nodes
and arcs.

The simplest goal type we refer to ascharacterize, which
consists of four properties: anattribute that describes a type of
data or measurement (thewhat of a goal), aregionof interest
(where), a periodof interest (when), and a datasource, which
can be a sensor, a data archive, or a model (how). An example
of a simple characterize goal is found in Figure 2. This Cmap
specifies the goal:characterize landcover over Sonora Mexico
during 2001 using data source MOD12Q1.

Fig. 2. Characterize Goal

Goals can be seen as composed out of other goals in two
ways: throughelaborating a value and throughconjoining
subgoals. An example of a goal conjoined from other goals is

the goal tocomparetwo data sources, e.g. output of a model
or data set in terms of another data set. A special case of a
compare goal isvalidation in which one data source becomes
a reference to validate the accuracy of another.

Fig. 3. Compare with Process Elaboration

In Figure 3, a comparison goal is expressed in which a
long term average of Net Primary Production (NPP) data is
compared against data from a single year. It is clear that a
comparison goal arises from a composition of two characterize
sub-goals. This example also illustrates aprocesselaboration,
which is discussed further below. Another example of a
composed goal is amonitor goal, an example of which is
found in Figure 4. Such a goal can be seen as requiring
a repeated characterization; the repeat pattern is specified
through afrequencyproperty. In this example, the frequency
is dynamically determined by an elaboration called atest,
discussed below.

Fig. 4. Monitor Goal with A Characterize Sub-goal

There are two ways to elaborate a value: through atestand
through defining aprocess. The need for a test elaboration
may arise because the values of some properties (such as
period, location, or source) are not known at specification
time. The specification language allows users to assert that
values are to be filled in atworkflow run time. The way this
is done is through asserting atestsub-goal. A test consists of
a characterization of some property and a boolean condition.
Depending on the truth of the condition, values of certain other
properties, such as region, period or frequency, are assigned.
An elaboration is depicted visually in Cmaps as an expansion
of the depth of a goal tree.

An example of a test elaboration is found in Figure 4 in the
context of a monitoring goal. A test consists of two attributes,
a target and acondition. The target subgoal is a characterize
goal. The attribute assigned in the characterize becomes a
value that is tested by the condition. For example, if the
attribute iscloud cover, as in the figure, the condition attribute
must assert something about that attribute (in the example,
whether some threshold value is exceeded).

The process elaboration allows for data to be processed as
part of achieving a goal. A process elaboration always appears
as a value of asourceattribute (i.e., a process describeshow
some desired data product is to be attained). In Figure 3
a comparison is made of two data sets to determine the
difference between the long-term NPP average over a given
region and period with the average NPP for a single year.
Computing the difference is performed by a function call. In
general, a process invocation specification requires threefields:
one or moreinputs(data sources), one or moreparametersthat
are required to run an algorithm.

Workflows tend to be highly structured objects that can be
reused and revised. Agoal library stores previously used goal
specifications and templates for each of the goal types. In
addition, at goal specification time, the user should be provided
with information that allows for the values of goal attributes
to be found. One way is throughregistriesthat define services
and databases for acquiring the requested data. These registries
could also be associated with access toservice discovery
engines.

In summary, a large class of Earth science investigations

can be viewed as based on the goal of characterizing a
phenomenon of interest, where to characterize a phenomenon
means to define a set of values for time, space, measurement
type and data or process source. From this foundation, other
goals such as comparing data sets, or monitoring, can be
composed. We defined two ways in which a goal can be
elaborated: either by making data depend on the result of a
test, or by invoking an algorithm for processing data as part
of achieving the goal.

B. Workflow Generation

We have developed a system whereby a goal specification is
automatically mapped into an executable workflow. To under-
take the translation, the system uses aprocess-basedmodel
of workflows. Processes are executing sequences of actions,
and a process language describes the possible states of the
processes. We use a graphical representation called aLabeled
Transition System[4] (LTS) for representing a workflow as a
set of states and transitions of a finite state machine. Machine
state transitions are modeled as labels consisting of names
of actions, which eventually become instantiated as service
invocations or other control actions. The building blocks of
the workflow model, and their instantiations into abstract
workflows, are described using an algebraic variant of the LTS
notation calledFinite State Processes(FSP). In FSP a process
is a composition of simple expressions of the formP : a → Q,
which is interpreted as “To execute processP , perform action
a and then execute processQ.

An abstract workflow defines the control logic and data flow
without describing the services to be invoked to execute the
workflow. This abstraction allows for reuse and sharing of
workflows, and facilitates collaboration.

Actions are organized within workflows as concurrent pro-
cesses. Broadly speaking, the workflow model has three parts:
the core, where a set of atomic process definitions for simple
sensor web service invocations and control actions are defined;
a set of workflow templates, processes that correspond to
workflow patterns found in high level goals such as monitor
and validate; and a set ofcomposition rulesfor instantiating
workflows. Figure 5 illustrates the three components using FSP
notation.

1) Core Workflow Model:There are two kinds of simple
actions in a workflow process:data acquisition(DA) actions
and control actions. DA actions directly map to sensor web
services to acquire data; control actions allow for an execution
system to initiate, monitor and control the state of workflow
execution.

DA actions are the actions that combine to satisfy science
goals. The model identifies three atomic DA actions:acquire
data, process data, andstore data, reflecting the major stages
of requesting, processing, and retrieving data. Theacquire data
action requires a specification of a measurement, a location, a
time, and the sensor used. The result of an acquire data action
is a collection of measurements for the specified location
and time. Aprocess dataaction refers to any numerical or
logical operation that extracts information of interest from

Core Model

GET = (get → END)

STORE = (store → END)

PROCESS = (process → END)

Workflow Templates

ACQUISIT ION = (ready → get → END | not ready → ACQUISIT ION)

MONITOR TEST = (done → END | not done → MONITOR)

CHARACTERIZE = ACQUISIT ION ; STORE; END.

MONITOR = CHARACTERIZE; MONITOR TEST,

CHARACTERIZE TEST = CHARACTERIZE; PROCESS; END.

Workflow Instantiation

‖G1 = (acq1 : MONITOR).

‖G2 = (acq2 : CHARACTERIZE TEST).

‖C1 = G2; G1; END.

‖CAMPAIGN ONCE = (C1‖G1‖G2).

CAMPAIGN REPEAT = CAMPAIGN ONCE; CAMPAIGN TEST,

CAMPAIGN TEST = (campaign done → END | campaign not done → CAMPAIGN REPEAT).

‖CAMPAIGN = (CAMPAIGN REPEAT).

Fig. 5. Fragment of process-based workflow model, illustrating components and operations required to generate workflowinstances. Thecore modeldefines
simple processes for retrieving and processing data.Workflow Templatesdefine recurring workflow patterns found in high level goals such as characterize and
monitor; and a workflowinstantiationusing model components.

acquired data. Data process actions are typically repeatedon
different inputs. Finally, astore dataaction produces a data
product required by the goals. Typically store actions consist of
copying the output of a data processing action to a designated
location for retrieval by the end user (the person issuing the
initial request for the data).

Control actions can be used for three purposes. First, as
a mechanism forbranching, either as the result of choice or
non-determinism. Choice control actions are associated with
two or more transitions in an LTS, where only one of the
triggers associated with the transition can be true. Branching
as the result of non-determinism occurs as the result of the way
the world is observed. For example, the result of requestinga
sensor may or may not succeed, depending on things beyond
the purview of the controlling system. Second, some control
actions are used forsynchronization, which is a way to impose
an order on a set of DA actions. For example, a processing
DA action may process data from an acquisition DA action. To
enforce the dependency of the processing action on its inputs,
a synchronizing action is introduced. Finally, a control action
may be used towait until some response from the sensor web
is received. For example, a control action can be used to wait
for notification that a set of measurements has been taken.

In Figure 5 (top) the core model is represented as four
processes. TheACQUISIT ION process consists of the

control actionready that indicates when data are ready to be
retrieved. It also contains a DA actionget that fetches the data.
The choice “|” operator allows for branching based on which
control actionready, not ready is enabled. The process also
allows for repeating a sequence of actions (recursion) and
thus allowing for waiting for data to be ready. This process
model can be modified further to allow for aborting a process
or other contingent action. TheEND process is a special
process signifying completion of a process, and the “→”
symbol signifies the state transition as the result of performing
an action.

Similarly, the STORE and PROCESS processes allow
for constructing workflows that include actions for puttingdata
somewhere to be retrieved by the requestor and to process
image data.

2) Workflow Templates:The core workflow model defines
simple processes out of atomic sensor web data acquisition
and control actions. Workflow templates are representations of
processes composed from other processes for the purpose of
representing repeating workflow patterns, including thosethat
correspond to high level goals. A library of workflow templates
can be constructed and expanded over time, comprised of
recurring patterns of workflow processes

The use of templates is illustrated in the middle sec-
tion of Figure 5. First, a process calledACQUISIT ION

is defined to elaborate aget action with control actions
ready and not ready to allow the execution system to
wait until some data are ready to be acquired. Similarly,
a MONITOR TEST process is defined that allows data
to be collected repeatedly over some period of time, again
based on a control actiondone. A CHARACTERIZE

process is defined as a sequence of getting, processing and
storing data for retrieval by the requestor (using “;” to indicate
process sequencing). Similarly, aMONITOR process is
represented as a sequence of repeatedCHARACTERIZE

processes, with a test to determine whether some thresh-
old or other monitoring goal has been reached. Finally, the
CHARACTERIZE TEST is a process that allows for a
process corresponding to a characterize goal that includesan
elaboration sub-goal.

A library of workflow templates can be grown to represent
patterns of workflow. Workflow templates are reusable scripts
that make it easier to instantiate workflows. They are meant
to be redundant in the sense that the set of legal workflow
instances defined by the core model and composition rules
is the same as the set generated with the addition of the
templates. Nonetheless, they allow for more simplicity in
running the model.

3) Workflow Instantiation:An abstract workflow is instanti-
ated into aconcrete workflowby a process of mapping actions
or processes to specific services or data sources. A concrete
workflow is an executable procedure, to be executed by an
executive, described below.

Workflow instantiation is the process of generating an
instance of an abstract workflow from user specifications.
Workflow instantiation is performed automatically out of the
following set of composition rules:

• process instantiation: defining a process as being an
instance of a certain workflow template;

• parallelization: defining two or more processes as exe-
cuting in parallel;

• action(→) andprocess (;) sequencing: defining processes
or actions as executing in sequence;

• process recursion: defining a process as a repeating
execution of other processes; and

• branching: defining conditional transitions of processes.

Figure 5 (bottom) gives an example of generating a work-
flow instance using each of these rules.acq1 : MONITOR

definesacq1 as an instance of a monitoring process.‖C1 =
G2; G1; END defines processC1 as a sequence of other
processes.‖CAMPAIGN ONCE = (C1‖G1‖G2) defines
a parallel process. Recursion and branching are defined in the
same way that was illustrated in the template examples.

In summary, the workflow model for data acquisition on
sensor webs can be summarized as follows:

• Basic actions come in two types: data acquisition (DA)
actions and control actions;

• Workflows consist of processes composed out of opera-
tions for sequencing, repeating, choice, non-determinism
and parallelism.

• A workflow model consists of three parts: the core
model for defining basic actions as processes; a collection
of workflow templates, which are scripts for defining
workflow patterns; and workflow instantiations, which are
automatically generated using composition rules.

C. Concrete Workflow Model

A concrete workflow is a binding of workflow actions to
specific resources for execution. In the literature, aworkflow
planning scheme[8] describes the method for mapping ab-
stract workflows into concrete workflows. Schemes are either
static or dynamic depending on when bindings of tasks to
resources occurs: static schemes perform all the bindings
before execution, based on current knowledge about the avail-
able resources, whereas dynamic bindings can occur during
execution. In this framework, we assume a static binding
that is generated through user inputs. Workflow planning
schemes can also involve criteria for optimization of execution
performance. Again, the framework described here does not
currently address these issues.

Binding DA actions involve introducing lower-level tasks
for transferring data or requests for data. It requires a concrete
workflow model that defines how tasks are to be executed on
specific resources. Similarly, control actions are mapped into
tasks for communicating with remote services, monitor the
progress of a data acquisition task, or test the outcome of an
analysis.

To facilitate the automatic execution of workflows, the
concrete workflow is represented as a finite state machine.
This representation is equivalent to the FSP format, but better
enables execution a finite state processor, described below. The
translation of a workflow in FSP format into a finite state
representation is performed by the LTSA tool [4]. An example
of a finite state representation of a concrete workflow is the
following:

Q0 =
(not_ready_acq1 -> Q0 | ready_acq1 -> Q1),
Q1 = (get_acq1 -> Q2),
Q2 = (end_1 -> Q3),
Q3 = (process_p1 -> Q4),
Q4 = (end_2 -> Q5),
Q5 = (store_s1 -> Q6),
Q6 = (not_done_0 -> Q0 |done_0 -> Q7),
Q7 = STOP.

TheQi designate states, and the sequences identified with the
states indicate the transitions, caused by invoking the actions.
Each action, either a control or DA action, maps to an entry
in an action mapping table.

This section has described a model for the automatic
composition of workflows from high level specifications based
on user goals. The following section describes a system for
automatically executing workflows.

IV. WORKFLOW EXECUTION

The function of a workflow execution system (run-time tool)
includes coordinating the remote resources used to carry out

data acquisition tasks, acquiring information from resources
required for access, monitoring the execution of individual
tasks and responding to execution failure. Execution systems
are constrained to meet the requirements of the designers of
the workflow being executed.

The system described here utilizes adistributed hierarchical
approach to workflow execution (see Figure 1), with three
levels: an executivebeing supported by a number ofweb
managersthat execute a portion of the workflow. Each lower
level manager, in turn, has access to a number ofservice
providersmanage the execution of tasks on specific resources.

A. Executive

The executive is a ’high level’ manager of workflow execu-
tion. The executive has complete access to the workflow state
information, which summarizes the current state of workflow
execution. It is the central coordinator of workflow execution,
as well as a high level interface to the user and other elements
of the workflow build system.

The executive is given as input the finite state representation
of a concrete workflow and the associated parameter table.
It continuously checks what actions areenabled(i.e. can be
executed) and executes them. A control action is executed by
an update to the state information to reflect the progress of the
workflow. A DA action is executed by sending the information
about the action to the appropriate web manager (discussed
further below). After submitting the action, the executivewill
monitor the progress of the action and check for violations
or anomalies during execution. Ultimately, the executive will
need to initiate responses to failures in execution (e.g. incase
a resource is not available). This capability of the executive is
beyond the current scope of this project.

B. Web Managers

The web managers provide an added layer of distributed
coordination between the executive and the web service layer.
There are three kinds of web managers: a data manager, a
process manager and a storage manager, which align with
the three DA actions (acquire, process, store) at the workflow
level.

The web managers are used in two phases of the overall
data acquisition process: during the construction of a goal,
and during execution. In the first phase, the web managers are
used to facilitateservice discovery. During goal creation the
web managers assist the user in finding and selecting services
or data sources to accomplish their goals. In the second phase,
the web managers execute the desired data acquisition action
using the providers.

Communication among the web managers, processes and
datasets is primarily through the use of URN (Universal
Resource Name). This nomenclature is chosen because of its
compatibility with standards and protocols, such as OGC ser-
vices, commonly in use. URNs uniquely identify the services
and once URN is passed to the provider it is resolved, the
particular process is loaded and executed. This provides a

clean unified interface that only accepts URN and list of inputs
and parameters.

The managers employ a flexible approach using plug-in
services. Each manages a set of dynamically loaded service
providers that provide access to various data resources, pro-
cesses, and storage resources. For testing purposes with TOPS
a Local Service Providerhas been developed, which uses
a SensorML [1] process model to describe local processes
and the constraints on their inputs and outputs. However, we
also plan to include the ability to access remote services (for
example some of the functionality of TOPS can be accessed
using web services).

C. Web Service Providers

The web service providersare loaded on demand from
external configuration files or databases, and can be updated
and reloaded during execution. Each represents a concrete
provider on the Web, whether for data, such as a NASA
DAAC, or processing capabilities. A provider also describes
a set of available data services (e.g. SOS, ftp).

The services are implemented as a set of re-usable Java
Plugin Framework (JPF) plug-ins that each deal with different
communication protocols. Plug-ins have been widely used
as a modular mechanism to extend the capabilities of host
applications in many areas, including remote sensing applica-
tions (e.g. Google Earth). Plug-ins can be reused either with
minimal customization for (SOS protocol plug-in) or more
customization (file naming conventions for FTP protocol plug-
in). The plug-in design enables customization to happen at
configuration rather than source code level.

In order to provide the necessary support for the managers,
each service plug-in must implement methods for service
discovery, retrieval and status check. However, any service
initialization and protocol details are handled internally by
the plug-in without the data manager knowing about it. We
are currently using a simple custom plug-in framework. Each
provider manages a pool of threads, allowing for multiple
requests to be handled simultaneously, thus supporting the
concurrency inherent in the workflow model. The providers
could also be run as a web service that handle multiple requests
from number of different clients, not just the Web Managers.

V. D ISCUSSION

A prototype of the workflow management system just
described is being tested using TOPS. Users of TOPS create
goals using Cmaps. Goals currently supported include simple
goals such as characterize as well as composite goals such as
comparisons. A library of goal templates and previously used
goal instances is maintained.

The Cmap tool generates translations of concept maps into
an xml representation. The xml is annotated by our prototype
with parameter information, as well as with URNs for access-
ing the specific data and processing services selected by the
users. The workflow generator is then invoked to instantiate
a workflow based on the goal inputs, as well as workflow

templates and libraries. The workflow is executed on TOPS
automatically using the executive and managers.

The level of automation currently supported by the system
is limited. More automation is required for it to be usable by
a wider user group, including scientists. The set of required
enhancements include:

• Extensions to the workflow build tool:
– A user interface for machine-guided assistance for

formulating Earth science goals, including automa-
tion for supporting goal editing, data and service
discovery, and maintaining and sharing goal libraries;

– Performance models for assisting the user in opti-
mizing the selection of goals based on criteria such
as cost and expected turnaround time for using a
specific service;

– A more powerful workflow language to support a
wider class of workflows. Of immediate interest is
the ability to represent workflows containing condi-
tional behavior; for example, to execute a task only
if some condition is true; and

– A workflow library maintenance system for reusing
workflow templates and instances.

• Extensions to the workflow execution tool:
– Capabilities to support simultaneous monitoring of

multiple workflow execution by the web managers;
– Extensions to the executive and managers to support

dynamic replanning of workflows as the result of task
failures.

In addition to the above, we intend to further modularize the
architecture to enable execution of the workflows on other
execution systems such as the Business Process Execution
Language (Bpel).

VI. SUMMARY

This paper has introduced the design and implementation of
a workflow management system for managing the acquisition,
processing, and storing of Earth science data, the major
components of what was referred to here assensor web
reconfiguration. The cornerstones of this system are

• a goal specification language that allows Earth scientists
and other end users to construct high level goals for data
acquisition,

• a process-based language of workflows for data acquisi-
tion that allows for the automated control of workflow
execution,

• a hierarchical, distributed automated workflow execution
system based on finite state control and

• a flexible interface to a web service layer that allows
for added transparency in the types of service protocols
utilized.

REFERENCES

[1] M. Botts. SensorML: Standard for in-situ and remote sensors. In
Proceedings of EOGEO-2004, June 2004. College London, London, UK.

[2] Y. Gil, E. Deelman, M. Ellisman, T. Fahringer, G. Fox, D. Gannon,
C. Goble, M. Livny, L. Moreau, and J. Myers. Examining the challenges
of scientific workflows.IEEE Computer, 40(12):24–32, 2007.

[3] M. Jackson and G. Twaddle.Business Process Implementation: Building
Workflow Systems. ACM Press/Addison-Wesley Publishing Co, 1997.

[4] J. Magee and J. Kramer.Concurrency: State Models and Java Program-
ming. Wiley, 2006.

[5] R. Nemani, P. Votava, J. Roads, M. White, P. Thornton, andJ. Coughlan.
Terrestrial observation and prediction system: Integration of satellite and
surface weather observations with ecosystem models. InProceedings of
the 4th International Conference on Integrating GIS and Environmental
Modeling (GIS/EM4), 2000. Banff, Canada.

[6] J. Novak. Concept mapping: A strategy for organizing knowledge. In
S. Glynn and R. Duit, editors,Learning Science in the Schools: Research
Reforming Practice, pages 229–245. Lawrence Erlbaum Associates, 1995.

[7] J. D. Novak and A. J. Caas. The theory underlying concept maps and
how to construct them. InTechnical Report IHMC CmapTools 2006-01
Rev 01-2008.

[8] J. Yu and R. Buyya. A taxonomy of workflow management systems for
grid computing.Journal of Grid Computing, 3:171–200, 2005.

[9] INTEX-B. http://www.espo.nasa.gov/intex-b/.

