

Solubilidad e Hidrólisis

Solubilidad e hidrólisis INDICE

- 10.1. Introducción.
- 10.2. Sales solubles: Hidrólisis.
- 10.3. Sales poco solubles: Solubilidad, producto de solubilidad.
- 10.4. factores que modifican la solubilidad y precipitación fraccionada.
- 10.4. Sales complejas: Definición, propiedades, disociación e importancia.

12.1. Introducción

INTRODUCCIÓN

$$H Cl(ac) + NaOH (ac) \longrightarrow H_2O (ac) + NaCl (ac)$$

- ❖ Sales solubles: altamente solubles incluso en concentraciones elevadas
- ❖ Sales insolubles: sales que se disuelven con gran dificultad y en pequeñas cantidades

Sales solubles: Hidrólisis.

Sales solubles: Hidrólisis.

Grado de hidrólisis

Grado o porcentaje de hidrólisis de una sal:

es el porcentaje al cual se hidroliza una sal

Leyes hidrólisis:

Una sal está más hidrolizada a menor concentración.

Una sal se hidrolizada más cuanto más debil sea el ácido o la base del que proceda.

Grado de hidrólisis

A) Sal ácido fuerte y base fuerte

B) Sal ácido fuerte y base débil

$$Cl^- + H_2O \longrightarrow no hay reacción$$

 $NH_4^+ + H_2O \Longrightarrow NH_3 + H_3O^+$

C) Sal ácido débil y base fuerte

$$Na^+ + H_2O \longrightarrow no hay reacción$$

 $C_2H_3O_2^- + H_2O \Longrightarrow HC_2H_3O_2 + OH^-$

Equilibrio de hidrólisis, K_h

$$H_2O + H_2O \longrightarrow H_3O^+ + OH^ K_W = K_c[H_2O][H_2O] = [H_3O^+][OH^-] = 1.0 \text{ } 10^{-14}$$

$$AB_{(S)} + H_2O (ac) \longrightarrow A^-(ac) + B^+(ac)$$

$$A^{-}(ac) + H_2O(ac) \stackrel{K_h}{\longrightarrow} AH(ac) + OH^{-}(ac) K_h = K_w/K_a$$

$$BH^{+}(ac) + H_{2}O(ac) \xrightarrow{K_{h}} B(ac) + H_{3}O^{+}(ac) K_{h} = K_{w}/K_{b}$$

A) Sal ácido fuerte y base fuerte

No se hidrolizan. pH=7

B) Sal ácido fuerte y base débil

$$BH^{+}(ac) + H_{2}O(ac) \stackrel{K_{h}}{\longleftarrow} B(ac) + H_{3}O^{+}(ac) K_{h} = K_{w}/K_{b}$$

C) Sal ácido débil y base fuerte

$$A^{-}(ac) + H_2O(ac) \stackrel{K_h}{\longleftarrow} AH(ac) + OH^{-}(ac) K_h = K_w/K_a$$

D) Sal ácido débil y base débil

Se hidrolizan ambas. El valor del pH depende de K_a y K_b

$$K_a > K_b$$
, pH ácido $K_a < K_b$, pH básico

Sales poco solubles:
Solubilidad,
ducto de solubilidad

Solubilidad, S

Máxima concentración de sal que se puede disolver en una cantidad dada de disolvente a una temperatura fija.

[sal] > solubilidad Se forma precipitado

[sal] < solubilidad — No se forma precipitado

Constante del producto de solubilidad, K_{ps}

• La constante de equilibrio para el equilibrio que se establece entre un soluto sólido y sus iones en una disolución saturada.

$$CaSO_4(s) \rightleftharpoons Ca^{2+}(aq) + SO_4^{2-}(aq)$$

$$K_{ps} = [Ca^{2+}][SO_4^{2-}] = 9,1x10^{-6}$$
 a 25°C

Producto de solubilidad, K_{ps}

Equilibrio de precipitación

$$AgCl(s) \longrightarrow Ag^{+}(aq) + Cl^{-}(aq)$$

$$K_{ps} = [\mathbf{A}\mathbf{g}^+][\mathbf{C}\mathbf{l}^-]$$

 K_{ps} es el producto de solubilidad

$$MgF_{2}(s) \rightleftharpoons Mg^{2+}(aq) + 2F^{-}(aq) \qquad K_{ps} = [Mg^{2+}][F^{-}]^{2}$$

$$Ag_{2}CO_{3}(s) \rightleftharpoons 2Ag^{+}(aq) + CO_{3}^{2-}(aq) \qquad K_{ps} = [Ag^{+}]^{2}[CO_{3}^{2-}]$$

$$Ca_{3}(PO_{4})_{2}(s) \rightleftharpoons 3Ca^{2+}(aq) + 2PO_{4}^{3-}(aq) \qquad K_{ps} = [Ca^{2+}]^{3}[PO_{3}^{3-}]^{2}$$

Producto de solubilidad, Kps

Soluto	Equilibrio de solubilidad	K_{sp}
Bromuro de plata	$AgBr(s) \iff Ag^{+}(aq) + Br^{-}(aq)$	$5,0 \times 10^{\circ}$
Carbonato de bario	$BaCO_3(s) \Longrightarrow Ba^{2+}(aq) + CO_3^{2-}(aq)$	$5,1 \times 10^{-1}$
Carbonato de calcio	$CaCO_3(s) \rightleftharpoons Ca^{2+}(aq) + CO_3^{2-}(aq)$	2.8×10^{-6}
Carbonato de estroncio	$SrCO_3(s) \Longrightarrow Sr^{2+}(aq) + CO_3^{2-}(aq)$	$1,1 \times 10^{\circ}$
Carbonato de magnesio	$MgCO_3(s) \rightleftharpoons Mg^{2+}(aq) + CO_3^{2-}(aq)$	$3,5 \times 10^{\circ}$
Carbonato de plata	$Ag_2CO_3(s) \rightleftharpoons 2 Ag^+(aq) + CO_3^{2-}(aq)$	$8,5 \times 10^{-3}$
Cloruro de mercurio(I)	$Hg_2Cl_2(s) \rightleftharpoons Hg_2^{2+}(aq) + 2 Cl^{-}(aq)$	$1,3 \times 10^{\circ}$
Cloruro de plata	$AgCl(s) \iff Ag^{+}(aq) + Cl^{-}(aq)$	1.8×10^{-1}
Cloruro de plomo(II)	$PbCl_2(s) \Longrightarrow Pb^{2+}(aq) + 2 Cl^{-}(aq)$	$1,6 \times 10^{-1}$
Cromato de plata	$Ag_2CrO_4(s) \rightleftharpoons 2 Ag^+(aq) + CrO_4^{2-}(aq)$	$1,1 \times 10^{\circ}$
Cromato de plomo(II)	$PbCrO_4(s) \Longrightarrow Pb^{2+}(aq) + CrO_4^{2-}(aq)$	$2.8 \times 10^{\circ}$
Fluoruro de calcio	$CaF_2(s) \iff Ca^{2+}(aq) + 2 F^{-}(aq)$	$5,3 \times 10^{\circ}$
Fluoruro de magnesio	$MgF_2(s) \Longrightarrow Mg^{2+}(aq) + 2 F^{-}(aq)$	$3,7 \times 10^{-1}$
Fosfato de magnesio	$Mg_3(PO_4)_2(s) \implies 3 Mg^{2+}(aq) + 2 PO_4^{3-}(aq)$	1×10^{-2}
Hidróxido de aluminio	$Al(OH)_3(s) \Longrightarrow Al^{3+}(aq) + 3OH^{-}(aq)$	$1,3 \times 10^{\circ}$
Hidróxido de cromo(III)	$Cr(OH)_3(s) \rightleftharpoons Cr^{3+}(aq) + 3OH^{-}(aq)$	$6,3 \times 10^{\circ}$
Hidróxido de hierro(III)	$Fe(OH)_3(s) \rightleftharpoons Fe^{3+}(aq) + 3OH^-(aq)$	4×10^{-38}
Hidróxido de magnesio	$Mg(OH)_2(s) \iff Mg^{2+}(aq) + 2OH^{-}(aq)$	1.8×10^{-6}
Ioduro de plata	$AgI(s) \iff Ag^{+}(aq) + I^{-}(aq)$	$8,5 \times 10^{\circ}$
Ioduro de plomo(II)	$PbI_2(s) \rightleftharpoons Pb^{2+}(aq) + 2I^-(aq)$	$7,1 \times 10^{\circ}$
Sulfato de bario	$BaSO_4(s) \Longrightarrow Ba^{2+}(aq) + SO_4^{2-}(aq)$	$1,1 \times 10$
Sulfato de calcio	$CaSO_4(s) \rightleftharpoons Ca^{2+}(aq) + SO_4^{2-}(aq)$	$9,1 \times 10^{\circ}$
Sulfato de estroncio	$SrSO_4(s) \Longrightarrow Sr^{2+}(aq) + SO_4^{2-}(aq)$	$3,2 \times 10^{\circ}$

Producto de solubilidad, K_{ps}

Relación entre Kps y S

Compuesto	Kps	catión	anión	relación entre Kps y s
AgCl	[Ag ⁺][Cl ⁻]	S	S	$K_{\rm sp} = s^2; s = (K_{\rm sp})^{\frac{1}{2}}$
BaSO ₄	$[Ba^{2+}][SO_4^{2-}]$	S	S	$K_{\rm sp} = s^2; s = (K_{\rm sp})^{\frac{1}{2}}$
Ag ₂ CO ₃	$[Ag^{+}]^{2}[CO_{3}^{2-}]$	2s	S	$K_{\rm sp}=4s^3; s=\left(\frac{K_{\rm sp}}{4}\right)^{\frac{1}{3}}$
PbF ₂	$[Pb^{2+}][F^{-}]^{2}$	s	2 s	$K_{\rm sp}=4s^3; s=\left(\frac{K_{\rm sp}}{4}\right)^{\frac{1}{3}}$
Al(OH) ₃	[Al ³⁺][OH ⁻] ³	s	3 <i>s</i>	$K_{\rm sp} = 27s^4; s = \left(\frac{K_{\rm sp}}{27}\right)^{\frac{1}{4}}$
Ca ₃ (PO ₄) ₂	[Ca ²⁺] ³ [PO ₄ ³⁻] ²	3 <i>s</i>	2 s	$K_{\rm sp} = 108s^5; s = \left(\frac{K_{\rm sp}}{108}\right)^{\frac{1}{5}}$

Criterios para la precipitación y precipitación total

$$AgI(s) \rightleftharpoons Ag^{+}(aq) + I^{-}(aq)$$

$$K_{\rm sp} = [Ag^+][I^-] = 8,5x10^{-17}$$

Mezclamos AgNO₃(aq) y KI(aq) para obtener una disolución que tiene

$$[Ag^{+}] = 0.010 \text{ M} \text{ e} [I^{-}] = 0.015 \text{ M}.$$

¿La disolución será saturada, supersaturada o no saturada?

$$Q = [Ag^+][I^-] = (0,010)(0,015) = 1,5x10^{-4} > K_{sp}$$

El producto iónico

Q se denomina generalmente producto iónico.

Disolución de un sólido:

Q < K_{ps} Disolución insaturada No precipitación

 $Q = K_{ps}$ Disolución saturada

Q > K_{ps} Disolución supersaturada Precipitación

Aplicación del criterio de precipitación a un soluto poco soluble.

Se añaden tres gotas de KI 0,20 M a 100,0 mL de Pb(NO₃)₂ 0,010 M. ¿Se formará un precipitado de ioduro de plomo? (Suponga que 1 gota = 0,05 mL.)

$$Pbl_2(s) \rightarrow Pb^{2+}(aq) + 2 l^{-}(aq)$$
 $K_{sp} = 7.1x10^{-9}$

Determine la cantidad de l' presente en la disolución:

$$n_{l^{-}} = 3 \text{ gotas } \frac{0.05 \text{ mL}}{1 \text{ gota } 1000 \text{ mL}} \frac{1 \text{ L}}{1 \text{ L}} \frac{0.20 \text{ mol KI}}{1 \text{ L}} \frac{1 \text{ mol I}^{-}}{1 \text{ mol KI}}$$

$$= 3x10^{-5} \text{ mol } I^{-}$$

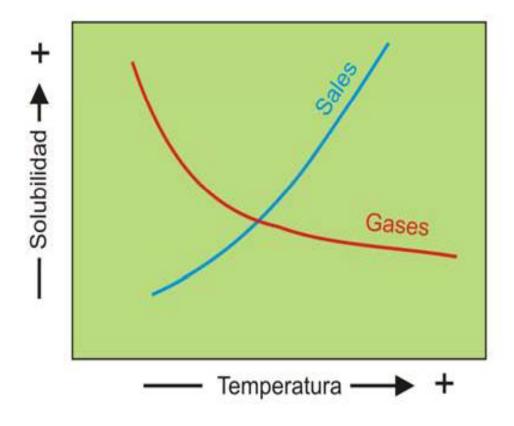
Determine la concentración de l' en la disolución:

$$[I^{-}] = \frac{3x10^{-5} \text{ mol } I^{-}}{0,1000 \text{ L}} = 3x10^{-4} \text{ mol } I^{-}$$

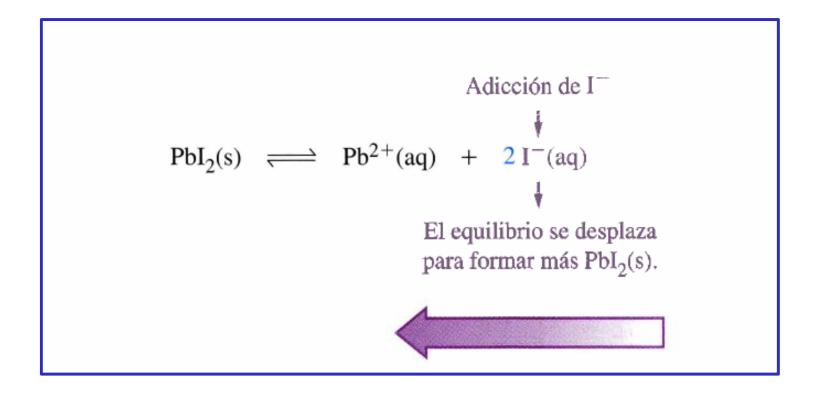
Aplicación del criterio de precipitación:

$$Q = [Pb^{2+}][I^{-}]^{2} = (0,010)(3x10^{-4})^{2}$$
$$= 9x10^{-10} < K_{sp} = 7,1x10^{-9}$$

(a)


12.3.

Actores que modifican la solubilidad


- Temperatura
- Efecto del ión común
- Efectos del pH

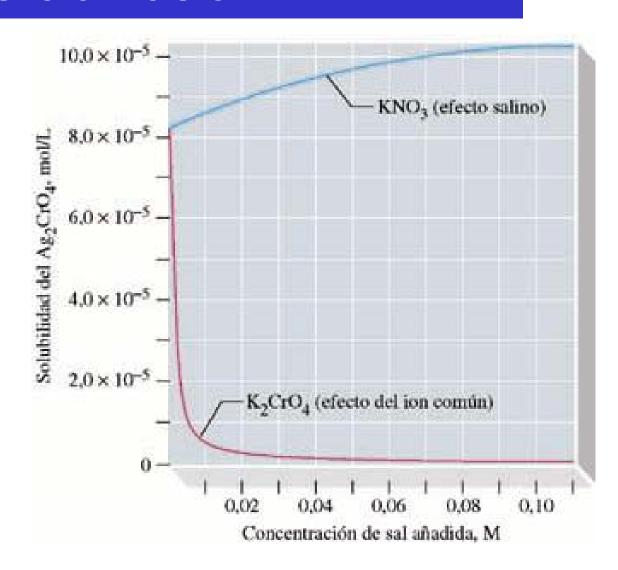
Temperatura: Si ΔH>0, T aumenta, Se favorece la disociación

Efecto del ión común: Disminuye la solubilidad

Efecto del ión común: Disminuye la solubilidad

¿Cual es la solubilidad de AgBr en (a) agua pura y (b) 0.0010 *M* NaBr?

AgBr (s)
$$\longrightarrow$$
 Ag⁺ (aq) + Br⁻ (aq)
 $K_{ps} = 7.7 \times 10^{-13}$
 $s^2 = K_{ps}$
 $s = 8.8 \times 10^{-7}$


NaBr (s)
$$\longrightarrow$$
 Na⁺ (aq) + Br⁻ (aq)
[Br⁻] = 0.0010 M
AgBr (s) \longrightarrow Ag⁺ (aq) + Br⁻ (aq)
[Ag⁺] = s
[Br] = 0.0010 + s \approx 0.0010
 $K_{ps} = 0.0010 \times s$
 $s = 7.7 \times 10^{-10}$

Efecto del ión común:

Disminuye la solubilidad

Efecto salino:

Aumenta la solubilidad

Efecto del pH: Existen sales cuya solubilidad depende del pH

$$Mg(OH)_2 (s) \leftrightarrow Mg^{2+}(aq) + 2OH^{-}(aq)$$
 $K_{sp} = 1.8x10^{-11}$

$$-OH^{+}(aq) + H_{3}O^{+}(aq) \rightarrow 2H_{2}O(aq) \qquad K = 1/K_{w} = 1,0x10^{14}$$

2 OH (aq) + 2 H₃O⁺(aq)
$$\rightarrow$$
 4 H₂O(aq) $\mathcal{K} = (1/\mathcal{K}_{w})^{2} = 1,0x10^{28}$

$$Mg(OH)_2$$
 (s) + 2 $H_3O^+(aq) \leftrightarrow Mg^{2+}(aq) + 4 H_2O$ (aq)

$$K = K_{sp}(1/K_w)^2 = (1.8 \times 10^{-11})(1.0 \times 10^{-14}) = 1.8 \times 10^{17}$$

Efecto del pH: Existen sales cuya solubilidad depende del pH

- •Bases insolubles se disuelven en disoluciones de acidos
- •Acidos insolubles se disuelven en disoluciones basicas

$$Mg(OH)_{2}(s) \stackrel{\longrightarrow}{\longleftarrow} Mg^{2+}(aq) + 2OH^{-}(aq)$$

$$OH^{-}(aq) + H_{3}O^{+}(aq) \longrightarrow 2 H_{2}O(1)$$

$$K_{ps} = [Mg^{2+}][OH^{-}]^{2} = 1.2 \times 10^{-11}$$

$$K_{ps} = (s)(2s)^{2} = 4s^{3} \qquad 4s^{3} = 1.2 \times 10^{-11} \qquad s = 1.4 \times 10^{-4} M$$

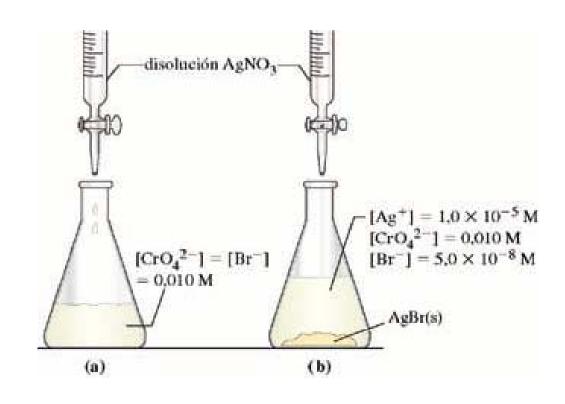
$$[OH^{-}] = 2s = 2.8 \times 10^{-4} M \qquad pOH = 3.55 \quad pH = 10.45$$

$$OH^{-}(aq) + H^{+}(aq) \stackrel{\longrightarrow}{\longrightarrow} H_{2}O(l)$$

$$Mg(OH)_2(s) \longrightarrow Mg^{2+}(aq) + 2OH^{-}(aq)$$

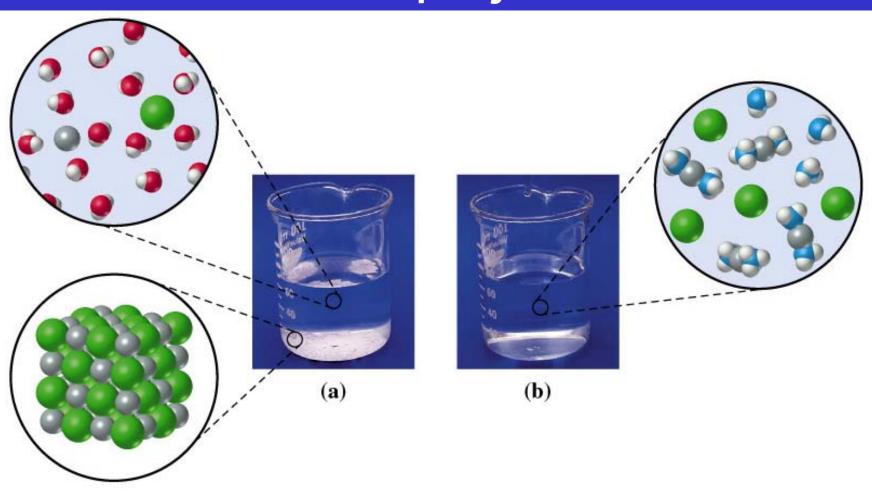
• A pH menor que 10,45 Aumenta solubilidad del Mg(OH)₂

•A pH mayores que 10.45 Disminuye la solubilidad del Mg(OH)₂


12.3.

recipitación fraccionada.

Precipitación fraccionada


• Una técnica en la que dos o más iones en disolución, todos ellos capaces de precipitar con un reactivo común, se separan mediante ese reactivo: un ion precipita mientras que el otro o los otros permanecen en disolución.

 Las diferencias significativas en las solubilidades son necesarias.

12.4.
Sales complejas:
efinición, propiedades, disociación
e importancia

Equilibrios que implican iones complejos

$$AgCl(s) + 2 NH_3(aq) \longrightarrow [Ag(NH_3)_2]^+(aq) + Cl^-(aq)$$

Formación de iones complejos

$$\operatorname{Co}^{2+}(aq) + 4\operatorname{Cl}^{-}(aq) \longrightarrow \operatorname{CoCl}_{4}^{2}(\overline{aq})$$

La constante de *formación o constante de estabilición* (K_f) es la constante de equilibrio para la formación de iones complejos

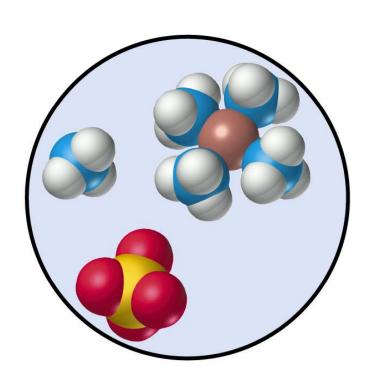

$$K_f = \frac{[\text{CoCl}_4^2]}{[\text{Co}^{2+}][\text{Cl}^{-}]^4} \qquad K_f \uparrow \qquad \text{Estabilidad del complejo} \uparrow$$

Table 16.4 Formation Constants of Selected Complex Ions in Water at 25°C

Complex Ion	Equilibrium Expression	Formation Constant ($K_{\rm f}$)
Ag(NH ₃) ₂ ⁺	$Ag^+ + 2NH_3 \implies Ag(NH_3)_2^+$	1.5×10^{7}
Ag(CN) ₂	$Ag^+ + 2CN^- \rightleftharpoons Ag(CN)_2^-$	1.0×10^{21}
Cu(CN) ₄ ²	$Cu^{2+} + 4CN^- \rightleftharpoons Cu(CN)_4^{2-}$	1.0×10^{25}
Cu(NH ₃) ₄ ²⁺	$Cu^{2+} + 4NH_3 \rightleftharpoons Cu(NH_3)_4^{2+}$	5.0×10^{13}
Cd(CN) ₄ ²	$Cd^{2+} + 4CN^- \rightleftharpoons Cd(CN)_4^{2-}$	7.1×10^{16}
Cdl ₄ ²	$Cd^{2+} + 4I^- \rightleftharpoons CdI_4^{2-}$	2.0×10^{6}
HgCl ₄ ²	$Hg^{2+} + 4CI^- \rightleftharpoons HgCl_4^{2-}$	1.7×10^{16}
Hgl ₄ ²⁻	$Hg^{2+} + 4I^- \Longrightarrow HgI_4^{2-}$	2.0×10^{30}
Hg(CN) ₄ ²	$Hg^{2+} + 4CN^- \rightleftharpoons Hg(CN)_4^{2-}$	2.5×10^{41}
$Co(NH_3)_6^{3+}$	$Co^{3+} + 6NH_3 \Longrightarrow Co(NH_3)_6^{3+}$	5.0×10^{31}
Zn(NH ₃) ₄ ²⁺	$Zn^{2+} + 4NH_3 \Longrightarrow Zn(NH_3)_4^{2+}$	2.9×10^{9}

iones complejos

- Compuestos de coordinación:
 - Sustancias que contienen iones complejos.
- Iones complejos:
 - Un anión o catión poliatómico compuesto por
 - un ion metálico central.
 - ligandos.

Constantes de formación de iones complejos

$$AgCl(s) + 2 NH_3(aq) \rightarrow [Ag(NH_3)_2]^+(aq) + Cl^-(aq)$$

AgCl(s)
$$\rightarrow$$
 Ag⁺(aq) + Cl⁻(aq) $K_{sp} = 1.8 \times 10^{-11}$

$$Ag^{+}(aq) + 2 NH_{3}(aq) \rightarrow [Ag(NH_{3})_{2}]^{+}(aq)$$

$$K_{\rm f} = \frac{[{\rm Ag}({\rm NH_3})_2]^+}{[{\rm Ag}^+][{\rm NH_3}]^2} = 1.6 \times 10^7$$

Determine si se formará un precipitado en una disolución que contiene iones complejos.

Se disuelve una muestra de 0,10 mol de AgNO₃ en 1,00 L de NH₃ 1,00 M. Si se añade 0,010 mol de NaCl a esta disolución, ¿precipitará el AgCl(s)?

Supongamos que

el valor de K_f es $ag^+(aq) + 2NH_3(aq) \rightarrow [Ag(NH_3)_2]^+(aq)$ muy grande:

Conc. inicial: 0,10 M 1,00 M 0 M

Cambio: -0,10 M -0,20 M +0,10 M

Conc. equil.: (≈0) M 0,80 M 0,10 M

[Ag⁺] es pequeño pero no 0, utilice K_f para calcular [Ag+]:

$$Ag^{+}(aq) + 2NH_{3}(aq) \rightarrow [Ag(NH_{3})_{2}]^{+}(aq)$$

Conc. inicial: 0 M 0,80 M 0,10 M

Cambios: +x M +2x M -x M

Conc. equil.: x M 0,80 + 2x M 0,10 - x M

$$K_{f} = \frac{[Ag(NH_{3})_{2}]^{+}}{[Ag^{+}][NH_{3}]^{2}} = \frac{0.10-x}{x(0.80+2x)^{2}} = \frac{0.10}{x(0.80)^{2}} = 1.6x10^{7}$$

$$x = [Ag^+] = \frac{0,10}{(1,6 \times 10^7)(0,80)^2} = 9,8 \times 10^{-9} \,\mathrm{M}$$

Compare Q_{sp} con K_{sp} y determine si se producirá la precipitación:

$$Q_{sp} = [Ag^{+}][CI^{-}] = (9.8x10^{-9})(1.0x10^{-2}) = 9.8x10^{-11}$$

$$K_{\rm sp} = 1.8 \times 10^{-10}$$

$$Q_{\rm sp} < K_{\rm sp}$$

AgCI no precipita.