Using Algebra Tiles

You Can "Feel" the Mathematics

Sandra Richardson, Ph.D. Dept. of Mathematics Lamar University Beaumont, TX

TEKS & Algebra Tiles

Grade 7: 7.1(C), 7.2(C), 7.5A

Grade 8: 8.14

Algebra I: A.4, A.10, C.3(B), C.4(B), D.2(A)

Algebra II: C.2(E)

3 Tiles

Х

Each tile represents an area.

Algebra Tiles Template

Big Ideas Using Algebra Tiles

- A & S Integers; Zero Principle
- Modeling Linear Expressions
- Solving Linear Equations
- Simplifying Polynomials
- Solving Equations for Unknown Variable
- M & D Polynomials
- Completing the Square
- Investigations

Additive Inverses

A combined negative and positive tile of the same area produces a zero pair.

Use Algebra Tiles to Model Integer Addition

Use Algebra Tiles to Model Integer Addition

Use Algebra Tiles to Model Integer Subtraction

Use Algebra Tiles to Model Integer Subtraction

MODELING LINEAR EXPRESSIONS

Grouping with Algebra Tiles

Ex: 3x means 3 rows of x

3x - 6 means 3 rows of x and 6 negative units

Distributive Property

3(X + 2)

$$3(X - 4)$$

-2(X + 2)
-3(X - 2)

Simplifying Polynomials

Simplify 2x + 4 + x + 2.

Simplify -3x + 1 + x + 3.

Simplify $(2x^2 - 2x + 3) - (3x^2 + 3x - 2)$.

SOLVING EQUATIONS

Use Algebra Mats to Solve Equations

Use algebra tiles to find value of X.

X + 2 = 3

Try 2X - 4 = 8.

Use algebra tiles to find value of X.

2X + 3 = X - 5

Substitution

Evaluate 3 + 2x if x = 4

Evaluate 3 - 2x if x = -4

MULTIPLYING POLYNOMIALS

Multiplying Polynomials

$$(x + 2)(x + 3)$$

Multiplying Polynomials

$$(x - 1)(x + 4)$$

Multiplying Polynomials

(x + 2)(x - 3)

$$(x - 2)(x - 3)$$

FACTORING POLYNOMIALS

3x + 3

$x^2 + 6x + 8$

$$x^2 - x - 6$$

 $x^{2} + x - 6$ $x^{2} - 1$ $x^{2} - 4$ $2x^{2} - 3x - 2$ $2x^{2} + 3x - 3$ $-2x^{2} + x + 6$

DIVIDING POLYNOMIALS

Dividing Polynomials

 $x^2 + 7x + 6$ x + 1

Dividing Polynomials

$$\frac{x^2 + 7x + 6}{x + 1}$$

$$\frac{2x^2 + 5x - 3}{x + 3}$$

$$\frac{x^2 - x - 2}{x - 2}$$

$$\frac{x^2 + x - 6}{x + 3}$$

INVESTIGATIONS

Investigations with Algebra Tiles

 Use algebra tiles to show that (x + 1)² and (x² +1) are not equivalent.

COMPLETING THE SQUARE

Using Algebra Tiles to Complete Square

- What is needed to create a perfect square trinomial for x² + 4x + ?
- Use algebra tiles to create a square. What tiles will be needed to complete the square?

Completing the Square

