Using Algebra Tiles

You Can "Feel" the Mathematics

Sandra Richardson, Ph.D.
Dept. of Mathematics
Lamar University
Beaumont, TX

TEKS \& Algebra Tiles

Grade 7: 7.1(C), 7.2(C), 7.5A

Grade 8: 8.14

Algebra I: A.4, A.10, C.3(B), C.4(B), D.2(A)

Algebra II: C.2(E)

3 Tiles

- Each tile represents an area.

Area of large square $=x(x)=x^{2}$
$x \quad$ Area of rectangle $=1(x)=x$
$1{ }_{\square}^{1}$
Area of small square $=1(1)=1$

Algebra Tiles Template

Big Ideas Using Algebra Tiles

- A \& S Integers; Zero Principle
- Modeling Linear Expressions
- Solving Linear Equations
- Simplifying Polynomials
- Solving Equations for Unknown Variable
- M \& D Polynomials
- Completing the Square
- Investigations

Additive Inverses

- A combined negative and positive tile of the same area produces a zero pair.

Use Algebra Tiles to Model Integer Addition

$$
\begin{array}{ll}
2+1= & \square \square \\
-2+-1= & \square \square
\end{array}
$$

Use Algebra Tiles to Model Integer Addition

$3+-1=$

$3+-3=$

Use Algebra Tiles to Model Integer Subtraction

$$
5-2=
$$

\square

$$
-4-(-3)=
$$

\square

Use Algebra Tiles to Model Integer Subtraction

$$
\begin{array}{rr}
3-(-5) & \square \square \square \\
& \square \square \square \square \square \square \square \square \square \square
\end{array}
$$

$$
-4-1
$$

\square
\square

MODELING LINEAR EXPRESSIONS

Grouping with Algebra Tiles

- Ex: $3 x$ means 3 rows of x

- $3 x-6$ means 3 rows of x and 6 negative units

**Try representing $2 x^{2}+X-3$

Distributive Property

$3(X+2)$

$3(X-4)$
$-2(X+2)$
$-3(X-2)$

Simplifying Polynomials

Simplify $2 \mathrm{x}+4+\mathrm{x}+2$.

Simplify $-3 x+1+x+3$.

Simplify $\left(2 x^{2}-2 x+3\right)-\left(3 x^{2}+3 x-2\right)$.

SOLVING EQUATIONS

Use Algebra Mats to Solve Equations

Use algebra tiles to find value of X.

$$
x+2=3
$$

Try $2 \mathrm{X}-4=8$.

Use algebra tiles to find value of X .

$$
2 x+3=x-5
$$

Substitution

Evaluate $3+2 x \quad$ if $x=4$

Evaluate 3-2x if $x=-4$

MULTIPLYING POLYNOMIALS

Multiplying Polynomials

$(x+2)(x+3)$

Multiplying Polynomials

$(x-1)(x+4)$

Multiplying Polynomials

$(x+2)(x-3)$
$(x-2)(x-3)$

FACTORING POLYNOMIALS

Factoring Polynomials

$3 x+3$

$2 x-6$

Factoring Polynomials

$x^{2}+6 x+8$

Factoring Polynomials

Factoring Polynomials

$$
x^{2}-x-6
$$

Factoring Polynomials

$x^{2}+x-6$
$x^{2}-1$
$x^{2}-4$
$2 x^{2}-3 x-2$
$2 x^{2}+3 x-3$
$-2 x^{2}+x+6$

DIVIDING POLYNOMIALS

Dividing Polynomials

$$
\frac{x^{2}+7 x+6}{x+1}
$$

Dividing Polynomials

$$
\begin{aligned}
& \frac{x^{2}+7 x+6}{x+1} \\
& \frac{2 x^{2}+5 x-3}{x+3} \\
& \frac{x^{2}-x-2}{x-2} \\
& \frac{x^{2}+x-6}{x+3}
\end{aligned}
$$

INVESTIGATIONS

Investigations with Algebra Tiles

- Use algebra tiles to show that $(x+1)^{2}$ and $\left(x^{2}+1\right)$ are not equivalent.

$$
\begin{aligned}
(x+1)^{2} & =(x+1)(x+1) \\
& =x^{2}+2 x+1
\end{aligned}
$$

COMPLETING THE SQUARE

Using Algebra Tiles to Complete Square

- What is needed to create a perfect square trinomial for $x^{2}+4 x+\square$?
- Use algebra tiles to create a square. What tiles will be needed to complete the square?

Completing the Square

- What is needed to create a perfect square trinomial for $\mathrm{x}^{2}-6 \mathrm{x}+\square$?

