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During the past decade, software development concepts 
have undergone a dynamic revolution. Software devel- 
opment methodologies have evolved to meet changing 
life cycle patterns which have had as their objective, 
emphasis on analysis and design. In addition, computer- 
assisted software engineering (CASE) has emerged to 
meet the unprecedented growth in analysis and design 
activities and is affecting how future systems will be 
developed and tested. These methodologies reinforce 
the need to accurately define systems specification 
prior to implementation. 

The concern over present and future software quality 
has grown as the volume and complexity of applica- 
tions increase. Software applications are critical to busi- 
ness operation and lead to severe maintenance prob- 
lems when they fail. This fact has prompted many 
firms to develop software engineering programs which 
attempt to define and implement techniques for soft- 
ware validation, verification, and testing throughout 
the development life cycle. 

THE PROBLEM 
Since there is increased emphasis on earlier stages of 
the life cycle, there is a need to build design complex- 
ity measures for the development of software systems 
and to formulate a procedure to utilize them in testing. 
Users, software managers, and project leaders try to 
justify projected cost and time for development as the 
development cycle proceeds. Projections made during 
design have to improve upon those made during speci- 
fication and should generate a more accurate projection 
of future testing requirements. Since complexity is a 
significant determinant of a system’s success or failure, 
the risk is high for development decisions based strictly 
on qualitative evaluations. A number of the same con- 
cerns which are addressed for program complexity 
apply equally as well at the design level: 

1. Designs with which we deal are overwhelmingly 
complex. 
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2. Designs cannot be fully comprehended by developer 
or reviewer. 

3. Designs are not rigorously verified through a testing 
process. In this instance, testing strategy is not de- 
rived directly from the design specification (nor is 
the level of testing directly proportional to the com- 
plexity of the design). 

Quality software should have the characteristics of 
being understandable and measurable [l]. Measure- 
ments are closely linked to software metrics theory 
which has received growing attention over the past 
decade. Much of the research on software metrics has 
been involved with program complexity languages such 
as PL/I, Pascal, Fortran, and C. While many studies 
dealt with the subject of measuring program complex- 
ity, few studies have concentrated on measuring com- 
plexity of development specifications. 

THE OBJECTIVE 
The software engineer should consider the design com- 
plexity and should understand its implication before 
proceeding into the construction stage of software de- 
velopment. Furthermore, few formal theories exist 
from which a design complexity measure can be gener- 
ated. One such approach, cyclomatic complexity, is a 
mathematical technique for program modularization 
and unit testing. Before cyclomatic complexity can be 
used in measuring design complexity, certain aspects 
must be examined. 

The objective of this article includes two elements. 
The first is to extend the mathematical basis of cyclo- 
matic complexity into architectural design of a system. 
In this context, architectural design is defined as the 
framework or structure of a system such as a hierarchy 
chart with its associated functions and control interre- 
lationships. The second element is to develop a testing 
methodology integrating the intuitive notions of design 
complexity and integration testing requirements. 

To accomplish the stated objectives, cyclomatic com- 
plexity is applied to architectural hierarchical design. 
The cyclomatic complexity approach is to measure and 
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control the number of paths through a program. It lim- 
its the number of basis paths in a source module. The 
analogous design entity is the subtree. Therefore, a 
major component of the methodology is to measure the 
number of subtrees through an architectural design. 

In. addition, fundamental tenets of structured testing 
for programs are utilized to build a testing methodology 
for integration testing of an architectural design. Two 
tenets, cyclomatic complexity and a basis set of test 
paths, are utilized as components of structured integra- 
tion testing. From this methodology, refinements are 
added and important integration strategies, such as top 
down and critical piece implementation are considered. 

CYCLOMATIC COMPLEXITY 
Since 1976, a number of software metrics have been 
developed. From the wide range of software metrics, 
four basic theories have been the source of the majority 
of the research conducted on software metrics. The first 
three theories were defined by Halstead, Albrecht, and 
DeMarco [Z, 8-11, 131. The last of these theories was 
defined by McCabe, as cyclomatic complexity, a mea- 
sure of the number of paths through a program [16]. 
The number of paths can be infinite if the program has 
a backward branch. Therefore, the cyclomatic measure 
is built on the number of basis paths through the pro- 
gram. 

Cyclomatic complexity, v(G), is derived from a 
flowgraph and is mathematically computed using graph 
theory. More simply stated, it is found by determining 
the number of decision statements in a program and is 
calculated as: 

v(G) = nurnber of decision statements + 1 

By counting the decision statements, called predicates, 
the complexity of a program can be calculated. How- 
ever, many decision statements contain compound con- 
ditions. An example is a compound IF statement: 

IFA=:BANDC=DTHEN 

If the predicates are counted in this example, v(G) is 
equal to 2 (1 IF statement + 1). If compound conditions 
are counted, the statement could be interpreted as: 

IFA=BandIFC=DTHEN 

Therefore, v(G) would be 3. Cyclomatic complexity rec- 
ognizes that compound predicates increase program 
complexity and integrates individual conditions in or- 
der to calculate v(G). An upper limit of 10 for program 
complexity is proposed because greater complexity 
would be less manageable and testable [16]. 

Software Metric Research 
Although cyclomatic: complexity yields quantification, 
there is no research which has established absolute 
thresholds for quality software. A number of studies, 
however, have investigated its significance. 

In one study, Myers calculated v(G) for the programs 
contained in the classic text by Kernigan and Plauger. 

For every case in which an improved prog:ram was sug- 
gested, this improvement resulted in a lower value for 
cyclomatic complexity [15, 171. In a second study, 
Walsh collected data on the number of software errors 
detected during the development phase of the AEGIS 
Naval Weapon System. The system contained a total of 
276 modules, approximately half of which had a v(G) of 
10 or less and half a v(G) more than 10. The average 
error rate for the modules in the first group ‘was 4.6 per 
100 source statements while the corresponding error 
rate for the more complex modules was 5.6 11211. In a 
series of controlled experiments conducted at General 
Electric, v(G) was found to predict the performance of 
programmers on comprehension, modification, and de- 
bugging tasks [19]. Finally, Henry, Kafura, and Harris 
reported empirical error data collected on the UNIX 
operating system. The correlation between cyclomatic 
complexity and the number of errors was above 0.90 

1141. 
More recently, research has provided ev:idence of the 

management potential of software metrics. A study by 
Butler, Richardson, and Hodil utilized software metrics 
as an important ingredient for a prototype knowledge- 
based system [3, 41. The knowledge representation 
scheme was rule-based, and the rules were developed 
to evaluate and prescribe maintenance action for com- 
mercial software. Since cyclomatic metrics correlated 
with key performance measures such as jo’b failure and 
success, they were integrated into the rules for the KBS. 

Taking a different approach, Carver measured the 
effects of program modification during testi.ng on nu- 
merous complexity metrics [5]. One of the conclusions 
reached by Carver was that if viable estimates of com- 
plexity increases are computed early in the software 
development process, the software designer can deter- 
mine when a module should be subdivided. Subdivi- 
sion, itself, creates a practical dilemma within the test- 
ing phase. 

Petschenik outlined the need for practical priorities 
in system testing [18]. While identifying th.ree priority 
rules that provide criteria for selecting test cases, he 
found that developers focused on individual system 
components rather than how those components worked 
together. However, as Carver alluded, it would repre- 
sent an important management tool for the software 
designer, if the metric could be used to qua.ntify indi- 
vidual components and their integration needs. 

DESIGN COMPLEXITY METRICS 

Background 
The current principles of the cyclomatic complexity 
metric are to (1) apply it to source code; (2) avoid exces- 
sive complexities that cause reliability problems; and 
(3) use the quantification to drive a testing process that 
will detect errors. Given a program, a flowgraph can be 
associated with it. In the graph, each node 8cclrresponds 
to a block of code where the flow is sequential and arcs 
correspond to branches in the program. The cyclomatic 
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FIGURE 1. Sample Flowgraph with Cyclomatic Complexity 

complexity of a graph with II vertices, e edges, and p 
connected components is [ZO] 

v(E) = e - n + p 

Based on established mathematical properties, the cy- 
clomatic complexity is equal to the maximum number 
of linearly independent paths through the program. 
Thus, as illustrated in Figure 1, the cyclomatic com- 
plexity of the flowgraph is 

v(E) = 15 - 11 + 1 

=5 

for e = 15, n = 11, and p = 1 

A basis set of five paths is also defined representing the 
maximum number of linearly independent paths 
through the program. 

Path Suhtree Analogue 
In structured design, the primary design instrument is 
the structure chart or hierarchy tree. As stated earlier, 
the previous cyclomatic work was path-based. The 
analogous design entities are a design tree and a design 
subtree. A design tree is the ordering established by the 
hierarchical relationship among modules of a system. 
A design subtree is a realizable subset of this hierarchy 
that can be executed through a design’s input data. 
Invoking a design tree means that it is entered at the 
top, executes lower-level modules and eventually exits 
through the top. This process results in a subtree 
within the original design tree structure. Just as a pro- 
gram can have an inordinately high number of paths, it 
is possible that a design tree can have an overwhelming 
finite number of subtrees. 

An example will help illustrate the design tree and 
design subtree concepts. Figure 2 shows a design with 
complexity 1, the only subtree is the design structure 
itself. The design tree in Figure 3 has the same number 
of modules and interrelationships as the design tree in 
Figure 2. It is, however, more dynamic as there are six 
decisions within it, noted by the decision (dot) and rep- 
etition (loop) conditions. One subtree is 1, 2, 5, 10, and 
11 indicating the functions 1, 2, 5, 10, and 11 are in- 
voked. However, function 2 does not invoke function 6 
and function 1 does not invoke functions 3 and 4 and 
their associated subordinate functions. 

Assume in the design structure illustrated in Figure 3 
that the loop in Module 1 iterates between 1 and 3 
times. The following expression quantifies the number 
of possible subtrees in the design.’ 

Subtrees = 2 X i ([l + l(1 + Z”)] X [(l + l(2’)) X 2’1)’ 
,=I 

= 3,485,040 

The reader can see that compared to everyday designs 
the illustrated design is relatively straightforward, but 
it yields a total of more than three million distinct 
subtrees. For this reason, the total number of subtrees 
cannot be used as a practical design structure quantifi- 
cation. 

In building the architectural design analogue, design 
reliability is enhanced when (1) design complexity is 
quantified; (2) design complexity is limited; and (3) the 
integration testing process is driven with design met- 
rics. Given the fact that the number of distinct subtrees 
can be arbitrarily high even within a relatively simple 
design, counting the subtrees for our design complexity 
is nonsensical. We will, therefore, define integration 
complexity to be a basis set of subtrees that, when 

’ The following may help the reader track the subtree quantification with the 
design structure. There are two possible subtrees through module 2 (MZ). 
(Ml-MZ-M5-MlO-Mll) and (Ml-MZ-M5-MlO-Mll-M6). Since the loop at Ml 
iterates between I and 3 times, we have 2 x XL, (# of subtrees from M3 and 
M4). The expression 2’ represents the number of subtrees from Ml2 (Ml& 
Ml%M13, Ml&M13-M14. Ml%M14): the expression (1 + 2’) represents the 
number of subtrees from MB. The desired result for the # of subtrees from M3 
and M4 is the number of subtrees from M3 (1 + l(1 + 2’)) multiplied by the 
number of subtrees from M4 [(l + l(2’)) X 2’1. 
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FIGURE 2. Design Trees with Complexity = 1 

- 

- 

FIGURE 3. Design Tree with Complexity > 1 

taken in linear combinations, yield the entire set of 
subt pees. 

Subtrees vs. Paths 
Generally, the structure chart defines how modules 
work together. A istructure chart does not define how 
each individual module works. Given this premise as a 
basis, consider the design tree C in Figure 4, Module M 
conditionally invokes modules A and B. Pseudocode 
for module M yields the flowgraph in Figure 4. In 
the flowgraph, darkened nodes A and B represent the 
CALL’s to invoke subordinate modules A and B. The 

cyclomatic complexity v(M) is 4. However, ,a portion of 
the complexity of module M has no influenlze on mod- 
ule M’s control over A and B. Module M’s flowgraph 
can be reduced to R as shown in Figure 5. The com- 
plexity of the reduced graph, iv(M), is 3. Each basis 
path through R yields a subtree in the design tree C. 
First, path EAX yields subtree MA. Second, path EBX 
yields subtree MB. Finally, path EX yields subtree M. 
Thus, the reduced flowgraph corresponding to the con- 
trol structure between modules generates the subtrees 
with the design. 

Module Design Complexity 
This process produces the first design metric. Module 
design complexity of a graph G, iv(G), is the cy:lomatic 
complexity of its reduced graph. Keduction is per- 
formed to eliminate any complexity which does not 
influence the interrelationship between design mod- 
ules. 

There are four reduction rules which are applied to 
produce a module’s design complexity. The key to the 
reduction principles is the existence and relationship 
of predicate nodes and black dots (calls), illustrated in 
Figure 6. 

The reduction rules are as follows: 

1. Sequential black dot: a call to a subordinate module 
cannot be reduced. 

Design Tree C 

M 

M’s Flowgraph 

M: 
E 

4% 
v 

v(,M) = 4 

FIGURE 4. Subtrees vs. Paths 
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iv(M) = 3 

FIGURE 5. Module M’s Reduced Flowgraph 

2. Sequential white dot: a sequential node can be re- 
duced to a single edge. 

3. Repetitive white dots: a logical repetition without a 
black dot can be reduced to a single node. 

4. Conditional white dots: a logical decision with two 
paths without a black dot can be reduced to one 
path. 

Applying these four reduction principles to a module’s 
flowgraph results in a module’s primary control struc- 
ture for calling subordinate modules. 

The application of the first three reduction rules is 
straightforward; rule 4, however, will be elaborated 
upon. Consider the initial flowgraphs in Figure 7. 
Assume that this flowgraph represents module A with 
cyclomatic complexity of 4. 

Step 1: Nodes 5 and 7 are eliminated using rule 2. 
Step 2: An edge from node 2 to node 6 is removed using 

rule 4. 
Step 3: Node z is eliminated using rule 2. 
Step 4: Node 6 is eliminated using rule 2. 
Step 5: The edge from Node 1 to Node 8 is removed 

using rule 4. 
Step 6: Node 8 is eliminated using rule 2. 

The resulting subalgorithm is a module design com- 
plexity iv(A) = 2. Notice that a set of 2 basis paths 
through the reduced graph is the desired integration 
test strategy. 
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Design Complexity 
After determining the module design complexity of the 
individual components of a design, it is possible to cal- 
culate the design complexity of a structure chart. The 
design complexity, called SO, of a module M is defined as 

So = 2 iv(Gi) 
ieil 

where D is the set of descendants of M unioned with M. 
Both design and module design complexities are calcu- 
lated for the modules in Figure 8. In the illustrated 
design, modules C, D, E, and F have module design 
complexity of I, since none call descendants. Reduced 
subalgorithms for M, A, and B produce a module design 
complexity of 3, 2, and 2 respectively. Module A design 
complexity is its own module design complexity plus 
its descendant’s module design complexity (S,(A) = 
iv(A) + iv(D) = 2 + 1 = 3). The same computation is 
used to calculate Module M and B design complexity. 
Module B is the sum of its module design complexity 
(iv(B) = 2) plus its descendants (iv(E) = 1 and iv(F) = 1). 
Module M design complexity for this illustration is 11 
which represents the complexity for the entire struc- 
ture chart. 

Figure 8 is a design which is a pure tree meaning 
there are no common modules. In this case, design 
complexity is upwardly additive (So(M) = iv(M) + 
S,(A) + S,,(B) + S,(C)). Designs are typically not 
pure trees in which case SO is not upwardly additive. 

1. Sequential Black Dot 

1 
t =3 4 
t + 

2. Sequential White Dot 

1 
P I =3 

3. Repetitive White Dots 

B => 0 
4. Conditional or Looping With White Dot Decisions 

Q Q 

@ is zero or more white 
0 

dot nodes. 

FIGURE 6. Module Design Complexity Reduction Principles 
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v(A) = 4 Reduction after Step 1 

Reduction after Step 2 1 
Q 9 

Reduction after Step 4 

3 9) 
IV (A) = 2 

Reduction after Step 6 

Reduction after Step 3 b 
u 9 

Reduction after Step 5 

FIGURE 7. Reduction Example 1 

Figure 9 is a design with a common module, E. In this 
case, design complexity calculations are completed by 
appl:ying the formula for So. For module A, its design 
complexity is its CIWII module design complexity plus 
its descendants’ module design complexity 

So(A) = iv(A) + iv(C) + iv(D) + iv(E) 

= 2 -I- 2 + 1 + 1 = 6 

Thus, S, can be calculated by summing the individual 
module design complexities. 

Inte,gration Complexity 
The last design metric, integration complexity, is a mea- 
sure of integration tests. This measure, S1, is a function 
of So and the number of modules, II. In general, integra- 
tion complexity is 

.sl = so - II + 

In Figure 9, S1 = 4 indicating there should be 4 integra- 
tion tests to qualify the design. More detailed discus- 
sion of S1 follows in the section on a test methodology. 

The importance of the integration complexity is in- 
herent to its testing requirements. Studies have shown 
that integration errors are as much as 30 times more 
costly to fix than unit errors. Most of the errors found 
in the later stages of development are integration er- 
rors. Consequently, properties of integration Icomplexity 
include the following: 

I. S, should be used to qualify the integration tests on a 
project and their validation should be part of an 
early validation of the design. 

2. S, quantifies a basis set of integration tests. 
3. Each S, test validates the integration of several mod- 

ules. 

Each of these properties plays an important role in the 
development of a testing methodology. 

Properties of Design Complexity 
Design complexity, SO, as a measure, exhibits, a number 
of important properties. First, So is bounded s.s: 

where n = number of modules in the design 

A design where So = n always behaves the !same way. 
There are no conditional calls to subordinate modules. 
Therefore, in this case, iv(G) = 1 for each module. On 
the other hand, if every decision within the design af- 
fects intermodule flow, then So = C n(Ei), or So is equal 
to the summation of cyclomatic complexity for all 
modules. 

The concept of design predicates can be us,ed to cal- 
culate design complexity. At the design stage, when the 
structure chart is the only product to analyze, design 
predicates are a feasible way to bound design complex- 
ity. With this approach, a design is evaluated. without 

M 

I I 

so=1 

iv=1 

so=1 
iv=1 

FIGURE 8. Additive Design Complerity 
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So= 6 iv = 
iv = 2 

h S,, (A) = iv(A) + iv(C) + iv(D) + 

\ E 

1 so= 1 
iv = 1 

I I 1 I 

1 

iv(E) 

FIGURE 9. Nonadditive Design Capacity 

looking at the internal pseudocode for each module. 
Generally, the convention is to show a conditional 
CALL from a superordinate to a subordinate module 
with a dot, as illustrated in Figures 3 and 10. Repetition 
is illustrated with an arc as shown for modules 3 and 4 
in Figure 3. In these cases, we define condition and 
repetition as design predicates. Moreover, for a module 
M, iv(M), is equal to the number of design predicates 
plus one. 

There are a number of additional properties of design 
complexity. 

1. Adding a module to a design increases SO by at least 

2. Adding a decision to call a module increases SO by 1. 
3. Multiple calls to a module M (reusable code) reduce 

So by So(M). 
4. SO is defined for any subdesign D (a module M and 

all its descendants) by: 

So(D) = C iv(GJ 
icD 

When two subsystems A and B are integrated into a 
larger system M the following holds: 

a. The modules of M are determined by the union 
denoted as U of A and B: 

M = AUB 

b. The number of modules (denoted n(M)) is n(M) = 
n(A) + n(B) - n(APB) where the intersection, de- 
noted as Q, is the number of modules common to 
A and B. 

c. The design complexity S,,(M) is determined by 

S,,(M) = So(A) + So(B) - So(AOB) 

where S,,(AQB) is the design complexity of mod- 
ules common to A and B. 
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d. The number of integration tests S,(M) is 

S,(M) = Sl (A) + 5, (B) - St (AQB) 

where St (AQB) is the integration complexity of 
modules common to A and B. Figure 10 illustrates 
the integration of two systems, M and N. 

Assume two designs M and N are integrated through an 
interface at Module B. Systems M and N have SO of 9 
and 9 respectively. For the new system, M’, the union 
of M and N yields 

S,(MUN) = So(M) + S,(N) - So(MQN) 

=9+9-o 

= 18 

S,(MUN) = S,(M) + S,(N) - S,(MQN) 

=5+5-l 

=9 

Proper utilization of these properties provides the 
designer with a tool to efficiently package and test the 
design. 

A STRUCTURED INTEGRATION 
TEST METHODOLOGY 
Structured integration testing utilizes the design met- 
rics developed in the previous section to produce a 
testing strategy derived from the design specification. 
Generally, the methodology is applied at two levels: 

iv=1 

M 
so=9 
s, =5 
iv =3 

A B 

so=5 

AiF 

iv=3 iv=1 

c 

iv=1 

M’ 
M 

( So=18 
iv = 3 

A B 

K iv=3 iV1 

c D 

‘rc 

7 S = lo/ Integration 

iv=1 u jJliy=j N z=;’ 

c3l 

S T 

%= so= 1 

iv=1 

N 
so=9 
s, =5 
iv =3 

S 

s,=5 s,=5 

JQ 

so=1 so=1 

iv=3 iv=3 iv=1 iv=1 

U 

fi biv=l iv=1 

Point 

+l 

FIGURE 10. Integrated Properties of S, 
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module integration testing and design integration 
testin.g. 

Module Integration Testing 
The scope of module integration testing is a module 
and its immediate subordinates. This testing require- 
ment is a particularly significant activity when packag- 
ing modules into s:ing,le programs. Generally, the meth- 
odology is implemented using three steps. 

1. Apply the reduction rules to the selected module. 
.z. The cyclomatic complexity of the subalgorithm is 

the module desi.gn complexity of the original algo- 
rithm. Module design complexity determines the 
number of module integration tests required to qual- 
ify integration of t:he module with its immediate 
subordinates. 

3. The baseline method applied to the subalgorithm 
yields the design subtrees and the module integra- 
tion tests. 

In ‘order to illustrate the methodology, review the 
design shown in Figure 9. Assume that module C’s inte- 
gration test strategy with modules D and E is to be 
developed. The flowgraph in module C represents the 
subaXgorithm after applying the reduction rules (step 1). 
Module design complexity, iv(C), is 2 (step 2). There- 
fore, two tests are required to qualify module C’s inte- 
gration with modules D and E. The design subtrees to 
be executed are CD and CE. Moreover, the module 
integration test procedure should be applied to modules 
A and M since they are superordinate functions. 

Design Integration Testing 
A second level of testing is derived from integration 
complexity. Since integration complexity quantifies 
a basis set of integration tests, it also can be used to 
establish the integration test strategy of design. Conse- 
quently, it determines the level of effort for testing a 
design. Generally, the methodology is applied using the 
following steps. 

1. Calculate iv for each module. 
2. Calculate So for each module. 
3. Using the top level module, calculate S,. 
4. S, is the number of basis subtrees required to qual- 

:ify the design. 
5. Build a path matrix, which is S, x n, to establish 

the basis set of subtrees. 
6. .Identify and label each predicate on the design tree. 
7. Place the predicate label above each column in the 

path matrix corresponding to the module it influ- 
ences. 

8. Apply the baseline method to the design to com- 
plete the matrix. Use 1 to indicate a module is 
executed and 0 to indicate it is not executed. 

9. Identify the subtrees for the matrix. 
10. Identify the conditions which drive the subtrees. 
11. Build the corresponding test cases for each subtree. 

In order to illustrate the entire methodology, consider 
the design structure in Figure 11. The design is com- 
posed of six modules, and it contains two des!.gn predi- 
cates. Since module D is a shared module, the design 
structure is nonadditive. After applying steps 1 through 
4, the iv’s, So’s, and S1 for the design yield design and 
integration complexity of 8 and 3. 

The path matrix (steps 5 through 7) for the integra- 
tion tests is built as a 3 X 8 matrix as shown in Fig- 
ure 12. In this example, the two design predicates are 
labeled p, and pz, and they have been placed over 
modules A and E, since they affect module execution. 
Applying the baseline method, a baseline is selected 
which executes all the modules in the system. Conse- 
quently, l’s are placed under each module to indicate 
that it is executed. Alternate subtrees are found by 
evaluating the predicates on the baseline, generally 
working from left to right. When predicate, pl, is evalu- 
ated on the baseline, the condition is negated. Since p, 
was previously set to execute module A, it now is set to 
not execute module A. Therefore, each module subor- 
dinate to module A alone will not be executed. For the 
third subtree, predicate, p2, is evaluated. In this exam- 
ple, it also was set to execute in the baseline. By negat- 
ing p2 and identifying its subordinate modu.les, the 
third subtree is defined. As a result, the path matrix 
would appear as shown in Figure 12. 

The subtrees are identified, and the conditions which 
drive the subtrees are established using the completed 
path matrix. Assume that p, and pz are simple predi- 
cates such as W = X and Y = Z, respectively. Then, the 
integration test requirements for the design would con- 
tain three subtrees with their associated conditions 
(steps 9 and 10). 

It is at the architectural level that the design metric 
can provide additional development support. Histori- 
cally, there have been a number of design .approaches 
such as top down, bottom up, critical piece first, and 
others. These approaches can be used to evaluate the 
testing requirements and establish a test plan to support 
the selected design approach. We can retkn to the-ix- 
ample in Figure 11 and assume that a baseline is cho- 
sen given a critical piece first design approach. If mod- 

M 

s, = 6 
iv = 2 

Pl 

A 

L 

so=3 so= 4 
iv = 1 _ iv=2 

s 
C E 

so= 1 so=1 - 

c‘s? 

so= 1 
iv = 1 iv = 1 - iv = 1 

s, =So-n+1 
= S-6+1 
= 3 

PI : Condition W q X 

P2: Condition Y = 2 

FIGURE 11. Design Integration Test Example 
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Pl P2 

Test Expected 
PATH MABC D E Condition Execution -_I--* - 

Baseline 1111 11 W=XandY=Z Invoke A & E 

Subtree 1 0 1 0 1 1 WrXandY=Z Invoke E, not A 

Subtree 1 1 1 1 1 0 W-XandYrZ Invoke A, not E 

Relative 
Frequency 3 3 3 2 3 2 

FIGURE 12. Integration Path Test Matrix 

ule E is critical due to performance needs of a real-time 
system, the baseline can be selected to isolate, as much 
as possible, module E. Only those unconditional mod- 
ules and module E’s superordinate modules are in- 
cluded. Applying the testing methodology, with a focus 
on module E, generates an alternative path matrix. 

Readers should note in Figure 13 that the relative 
frequency of execution of a number of modules during 
the test is altered. In this simple illustration, modules A 
and C are not executed as frequently. Given individual 
design approaches, the baseline can be established to 
focus on key components during the actual tests. Con- 
sequently, the software designer can implement a test- 
ing strategy best suited for the selected design approach 
and derived from the design specification. 

SUMMARY 
Quantifying the complexity of a design provides the 
system developer metrics which represent an important 
management tool. Our design metrics-module design 
complexity, design complexity, and integration com- 
plexity-are three such measures. These metrics are 
derivatives of the well-founded cyclomatic complexity. 
As the decision structure of a program is an important 
indication of program complexity, the design structure 
which specifies the relationship among modules in a 
design also defines the overall design complexity. The 
reduction technique used to determine design complex- 
ity addresses the need to test how modules work to- 
gether rather than how each module works. More im- 
portantly, the quantification can be used to drive the 
testing process at two levels: individual modules and 
overall design framework. Calculation of design metrics 
represents a new management and testing tool previ- 
ously unavailable to software developers. 

Intuitively, the design complexity metrics exhibit a 
number of desired properties which support their appli- 
cability. 
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l The metric intuitively correlates with the difficulty of 
comprehending a design. When we view large compli- 
cated designs, the metric should yield a high number. 
Designs we intuitively deem as simple should have a 
relatively low number. As a minimum, the complex- 
ity metric will certainly initiate hot debate about par- 
ticular designs and design methodologies in general. 

l The metric is objective and mathematically rigorous. In 
addition to being intuitive, it is critical that the met- 
ric be objective. The same design viewed at two dif- 
ferent times or by two people should yield the same 
complexity. If it is not objective, the various vested 
interests involved in a development job will no doubt 
have differing interpretations. 

l The metric should be related to the effort to integrate the 
design. The most costly activity associated with a de- 

Pl P2 

Path M A B C D E 

Baseline 1 0 1 0 1 1 

1 1 1 1 1 1 

1 0 1 0 1 0 

Subtree 

Subtree 

Relative 
Frequency 3 1 3 1 3 2 

FIGURE 13. Critical Module Integration Test Matrix 


