
MATH 311-02 Notes Introduction to Higher Math

1 Modular Arithmetic and its properties

One interesting form of equivalence among integers is what is called modular congruence. Informally
we may think of two numbers as congruent modulo n when they have the same remainder on division
by n. In some ways this is a generalization of the concept of parity: even numbers are those which
leave a remainder of 0 when divided by 2, and odd numbers are those that leave a remainder of 1.
So, for instance, one might think of −1, 7, and 79 as “congruent” modulo 4, because they all leave a
remainder of 3 on division by 4. (this is not entirely obvious for −1, of course). This is an intuitive
way of thinking about it, but in this course we are demanding rigor, so we need to come up with a
more formal and explicit definition!

Definition 1. For integers a, b, and n, it is said that a is congruent to b modulo n, or that a ≡ b
(mod n) if and only if n | a− b.

Sor for instance, the above assertion that 7 and 79 were congruent modulo 4 is justified here by
the explicit assertion that 4 | (79− 7), which, if further jsutification was needed, could be confirmed
by noting that 79− 7 = 72 = 4 · 18.

There are several useful properties of modular arithmetic. First, there is the fact that congruence
modulo n satisfies 3 popular properties of relations:

Proposition 1 (Reflexivity of modular congruence). If a and n are integers, then a ≡ a (mod n).

Proof. We know that a − a = 0, and one of the elementary results seen previously is that n | 0 for
any integer n. Thus, since n | a− a, it follows from the definition of modular congruence that a ≡ a
(mod n).

Proposition 2 (Symmetry of modular congruence). For integers a, b, and n, if a ≡ b (mod n), then
b ≡ a (mod n).

Proof. Since a ≡ b (mod n), it follows that n | a− b. We may use a result from the previous section
(specifically, the result that asserted that any multiple of a number divisible by n was also divisible
by n), to derive from n | a− b that n | (−1) · (a− b), or, arithmetically simplifying, n | b− a. Then,
by definition, b ≡ a (mod n).

Proposition 3 (Transitivity of modular congruence). For integers a, b, c, and n, if a ≡ b (mod n)
and b ≡ c (mod n), then a ≡ c (mod n).

Proof. Since a ≡ b (mod n), it follows that n | a− b. Likewise, since b ≡ c (mod n), it follows that
n | b − c. Using a result from a previous day (that the sum of two numbers divisible by n is itself
divisible by n), we may thus conclude that n | (a− b) + (b− c); simplifying arithmetically, it follows
that n | a− c, so a ≡ c (mod n).

Proposition 4 (Additivity of modular congruence). For integers a, b, c, d, and n, if a ≡ c (mod n)
and b ≡ d (mod n), then a + b ≡ c + d (mod n).

Proof. Since a ≡ c (mod n), it follows that n | a− c. Likewise, since b ≡ d (mod n), it follows that
n | b − d. Using a result from a previous day (that the sum of two numbers divisible by n is itself
divisible by n), we may thus conclude that n | (a− c) + (b− d); rearranging arithmetically, it follows
that n | (a + b)− (c + d), so a + b ≡ c + d (mod n).

Proposition 5 (Multiplicitivity of modular congruence). For integers a, b, c, d, and n, if a ≡ c
(mod n) and b ≡ d (mod n), then ab ≡ cd (mod n).
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Proof. Since a ≡ c (mod n), it follows that n | a− c. Likewise, since b ≡ d (mod n), it follows that
n | b − d. From these two divisibility criteria, we may use the linear condination theorem proven
yesterday to show that

n | [b(a− c) + c(b− d)]

which will simplify algebraically to n | ab− cd, so ab ≡ cd (mod n).
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