MATH 311-02 Notes Introduction to Higher Math

1 Modular Arithmetic and its properties

One interesting form of equivalence among integers is what is called modular congruence. Informally
we may think of two numbers as congruent modulo n when they have the same remainder on division
by n. In some ways this is a generalization of the concept of parity: even numbers are those which
leave a remainder of 0 when divided by 2, and odd numbers are those that leave a remainder of 1.
So, for instance, one might think of —1, 7, and 79 as “congruent” modulo 4, because they all leave a
remainder of 3 on division by 4. (this is not entirely obvious for —1, of course). This is an intuitive
way of thinking about it, but in this course we are demanding rigor, so we need to come up with a
more formal and explicit definition!

Definition 1. For integers a, b, and n, it is said that a is congruent to b modulo n, or that a = b
(mod n) if and only if n | a —b.

Sor for instance, the above assertion that 7 and 79 were congruent modulo 4 is justified here by
the explicit assertion that 4 | (79 — 7), which, if further jsutification was needed, could be confirmed
by noting that 79 — 7=72=4-18.

There are several useful properties of modular arithmetic. First, there is the fact that congruence
modulo n satisfies 3 popular properties of relations:

Proposition 1 (Reflexivity of modular congruence). If a and n are integers, then a = a (mod n).

Proof. We know that a — a = 0, and one of the elementary results seen previously is that n | 0 for

any integer n. Thus, since n | a — a, it follows from the definition of modular congruence that a = a
(mod n). O

Proposition 2 (Symmetry of modular congruence). For integers a, b, andn, ifa = b (mod n), then
b=a (mod n).

Proof. Since a = b (mod n), it follows that n | a —b. We may use a result from the previous section
(specifically, the result that asserted that any multiple of a number divisible by n was also divisible
by n), to derive from n | a — b that n | (—=1) - (a — b), or, arithmetically simplifying, n | b — a. Then,
by definition, b = a (mod n). O

Proposition 3 (Transitivity of modular congruence). For integers a, b, ¢, and n, if a = b (mod n)
and b= ¢ (mod n), then a = ¢ (mod n).

Proof. Since a = b (mod n), it follows that n | a — b. Likewise, since b = ¢ (mod n), it follows that
n | b — c. Using a result from a previous day (that the sum of two numbers divisible by n is itself
divisible by n), we may thus conclude that n | (a — b) + (b — ¢); simplifying arithmetically, it follows
that n | a — ¢, so a = ¢ (mod n). O

Proposition 4 (Additivity of modular congruence). For integers a, b, ¢, d, and n, if a = ¢ (mod n)
and b=d (mod n), then a +b=c+d (mod n).

Proof. Since a = ¢ (mod n), it follows that n | @ — ¢. Likewise, since b = d (mod n), it follows that
n | b —d. Using a result from a previous day (that the sum of two numbers divisible by n is itself
divisible by n), we may thus conclude that n | (a — ¢) + (b — d); rearranging arithmetically, it follows
that n | (a +b) — (c+d),so a+b=c+d (mod n). O

Proposition 5 (Multiplicitivity of modular congruence). For integers a, b, ¢, d, and n, if a = ¢
(mod n) and b = d (mod n), then ab = cd (mod n).
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Proof. Since a = ¢ (mod n), it follows that n | a — ¢. Likewise, since b = d (mod n), it follows that
n | b —d. From these two divisibility criteria, we may use the linear condination theorem proven

yesterday to show that
n| [bla—c)+clb—d)

which will simplify algebraically to n | ab — cd, so ab = ¢d (mod n). O
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