1 Modular Arithmetic and its properties

One interesting form of equivalence among integers is what is called modular congruence. Informally we may think of two numbers as congruent modulo n when they have the same remainder on division by n. In some ways this is a generalization of the concept of parity: even numbers are those which leave a remainder of 0 when divided by 2 , and odd numbers are those that leave a remainder of 1 . So, for instance, one might think of $-1,7$, and 79 as "congruent" modulo 4 , because they all leave a remainder of 3 on division by 4 . (this is not entirely obvious for -1 , of course). This is an intuitive way of thinking about it, but in this course we are demanding rigor, so we need to come up with a more formal and explicit definition!

Definition 1. For integers a, b, and n, it is said that a is congruent to b modulo n, or that $a \equiv b$ $(\bmod n)$ if and only if $n \mid a-b$.

Sor for instance, the above assertion that 7 and 79 were congruent modulo 4 is justified here by the explicit assertion that $4 \mid(79-7)$, which, if further jsutification was needed, could be confirmed by noting that $79-7=72=4 \cdot 18$.

There are several useful properties of modular arithmetic. First, there is the fact that congruence modulo n satisfies 3 popular properties of relations:

Proposition 1 (Reflexivity of modular congruence). If a and n are integers, then $a \equiv a(\bmod n)$.
Proof. We know that $a-a=0$, and one of the elementary results seen previously is that $n \mid 0$ for any integer n. Thus, since $n \mid a-a$, it follows from the definition of modular congruence that $a \equiv a$ $(\bmod n)$.
Proposition 2 (Symmetry of modular congruence). For integers a, b, and n, if $a \equiv b(\bmod n)$, then $b \equiv a(\bmod n)$.

Proof. Since $a \equiv b(\bmod n)$, it follows that $n \mid a-b$. We may use a result from the previous section (specifically, the result that asserted that any multiple of a number divisible by n was also divisible by n), to derive from $n \mid a-b$ that $n \mid(-1) \cdot(a-b)$, or, arithmetically simplifying, $n \mid b-a$. Then, by definition, $b \equiv a(\bmod n)$.

Proposition 3 (Transitivity of modular congruence). For integers a, b, c, and n, if $a \equiv b(\bmod n)$ and $b \equiv c(\bmod n)$, then $a \equiv c(\bmod n)$.

Proof. Since $a \equiv b(\bmod n)$, it follows that $n \mid a-b$. Likewise, since $b \equiv c(\bmod n)$, it follows that $n \mid b-c$. Using a result from a previous day (that the sum of two numbers divisible by n is itself divisible by n), we may thus conclude that $n \mid(a-b)+(b-c)$; simplifying arithmetically, it follows that $n \mid a-c$, so $a \equiv c(\bmod n)$.

Proposition 4 (Additivity of modular congruence). For integers a, b, c, d, and n, if $a \equiv c(\bmod n)$ and $b \equiv d(\bmod n)$, then $a+b \equiv c+d(\bmod n)$.

Proof. Since $a \equiv c(\bmod n)$, it follows that $n \mid a-c$. Likewise, since $b \equiv d(\bmod n)$, it follows that $n \mid b-d$. Using a result from a previous day (that the sum of two numbers divisible by n is itself divisible by n), we may thus conclude that $n \mid(a-c)+(b-d)$; rearranging arithmetically, it follows that $n \mid(a+b)-(c+d)$, so $a+b \equiv c+d(\bmod n)$.

Proposition 5 (Multiplicitivity of modular congruence). For integers a, b, c, d, and n, if $a \equiv c$ $(\bmod n)$ and $b \equiv d(\bmod n)$, then $a b \equiv c d(\bmod n)$.

Proof. Since $a \equiv c(\bmod n)$, it follows that $n \mid a-c$. Likewise, since $b \equiv d(\bmod n)$, it follows that $n \mid b-d$. From these two divisibility criteria, we may use the linear condination theorem proven yesterday to show that

$$
n \mid[b(a-c)+c(b-d)]
$$

which will simplify algebraically to $n \mid a b-c d$, so $a b \equiv c d(\bmod n)$.

