El modelo mecánico del éter En su primer trabajo, "On Faraday's Lines of Force" (publicado en 1855-6), Maxwell había desarrollado matemáticamente muchas de las ideas de Faraday. Creía que el campo electromagnético realmente estaba constituido por un éter subordinado a las leyes de la mecánica newtoniana. El problema de Maxwell se centraba en dar con un modelo del éter del campo electromagnético que incorporara la masa y elasticidad necesarias para la velocidad finita de la inducción y que fuera coherente con los fenómenos eléctricos y magnéticos ya conocidos. Las ideas de Faraday jugaron un papel muy importante en la construcción de dicho modelo, así como los denominados remolinos de Thomson. El modelo consistía en suponer que la masa de los remolinos depende de la permeabilidad magnética del medio y que la electricidad está constituida por bolitas que separan unos remolinos magnéticos de otros. El desplazamiento de las partículas eléctricas da lugar a una corriente eléctrica. Mientras pasa corriente, las partículas se mueven de un remolino a otro. Al desplazarse pueden dar saltos y provocar una pérdida de energía que aparece en forma de calor; pero mientras están girando, no hay rozamiento entre la partícula y el remolino, y no se producen pérdidas de energía. En principio, parece posible mantener indefinidamente un campo magnético. Por último, supuso que los remolinos magnéticos están dotados de elasticidad. El modelo mecánico del campo electromagnético de Maxwell es uno de los más imaginativos pero menos verosímiles que nunca se hayan inventado. Es el único modelo del éter que logró unificar la electricidad estática, la corriente eléctrica, los efectos inductivos y el magnetismo, y a partir de él, Maxwell dedujo sus ecuaciones del campo electromagnético y su teoría electromagnética de la luz. La deducción de las ecuaciones es enrevesada y asombrosa. Cada una de las magnitudes mecánicas y eléctricas está específicamente representada por un aspecto del modelo mecánico: ? En un medio conductor, la intensidad de corriente en un punto (j) viene representada por el número de bolas que pasan por ese punto en un segundo. Estas partículas eléctricas rozan contra los remolinos adyacentes y les transmiten un movimiento de rotación. ? La intensidad de la fuerza magnética (H) está representada por la velocidad del remolino en su superficie. Su dirección viene dada por la del eje del remolino. ? La energía del campo magnético viene dada por la energía cinética de los remolinos en movimiento, que es proporcional a ? H2. ? El estado electrotónico o potencial vectorial (A) está relacionado con el momento de los remolinos. ? Maxwell supuso que el desplazamiento total (D) es directamente proporcional a la fuerza que actúa sobre la bola; la constante de proporcionalidad es análoga a la constante dieléctrica o capacidad inductiva específica ? del medio D=?E. ? La energía del campo eléctrico se corresponderá con la energía elástica de las partículas deformadas. ? La carga está producida por una presión mutua ejercida por las partículas eléctricas. La presión es análoga al potencial eléctrico o tensión ?. Maxwell dedujo sus ecuaciones en etapas: 1. La de los remolinos para explicar los efectos puramente magnéticos. 2. La de las bolas eléctricas para deducir las relaciones entre corriente y magnetismo, incluida la inducción. 3. La de la elasticidad de las bolas para explicar los fenómenos de la carga estática. Cada una de estas etapas fue un paso hacia la coronación de su obra: la teoría electromagnética de la luz. Maxwell había conseguido expresar la velocidad de las ondas transversales del mecanismo en términos de la capacidad inductiva específica y la permeabilidad magnética del medio. La rigidez estaba relacionada con la capacidad inductiva específica, y la densidad del medio con la permeabilidad magnética; se sabía que el cuadrado de la velocidad de las ondas transversales era la razón entre ambas. Midiendo la capacidad inductiva específica y la permeabilidad magnética de un medio, podía predecirse la velocidad de las ondas de inducción. Sabía también, que su modelo era poco satisfactorio desde cualquier punto de vista físico o metafísico. Por lo que se decidió a considerar el problema de liberar las ecuaciones y la teoría electromagnética de la luz de su modelo mecánico.