El descubrimiento de las ondas electromagnéticas Los experimentos de Hertz constituyeron la primera y decisiva victoria de la teoría de campos y de la derrota de la idea newtoniana de la acción instantánea y a distancia. Estos experimentos tienen una dimensión social por haber hecho posible el desarrollo de la comunicación a nivel de masas por medio de la radio y de la televisión. Faraday había intentado encontrar un experimento que demostrara la velocidad finita de las perturbaciones y que constituyera, por tanto, una prueba crucial de su teoría de campos. El proyecto inicial de Hertz consistía en demostrar que la variación de la polarización de las sustancias dieléctricas produce un campo magnético. Según la teoría de Maxwell, una variación de la polarización de un material dieléctrico, tiene, al igual que una corriente de conducción, efectos magnéticos. Para ello, tenía que crear un campo eléctrico alterno que pudiera polarizar y despolarizar rápidamente un bloque de material dieléctrico. Modificando y perfeccionando el diseño de los distintos dispositivos experimentales, llegó al descubrimiento de las ondas electromagnéticas. También descubrió, que si dos conductores están iluminados por luz ultravioleta, para que salte una chispa entre ellos basta con una diferencia de potencial mucho menor. Posteriormente, otros científicos descubrieron que solamente era efectiva la luz que incidía sobre el polo negativo. El denominado efecto fotoeléctrico recibió la explicación adecuada con la teoría cuántica de la luz de Einstein. Hertz pensó que sería posible producir interferencias con dos ondas electromagnéticas, y como los fenómenos de interferencia están íntimamente ligados a los fenómenos ondulatorios quedaría así demostrada la existencia de las ondas electromagnéticas. Produjo ondas estacionarias en el aire, colocando una lámina de metal en la pared opuesta al aparato. La onda reflejada interfería con la incidente dando lugar a una onda estacionaria. Consiguió, más tarde, producir ondas electromagnéticas de longitud de onda mucho más corta, reduciendo la capacidad del vibrador. Dirigiendo estas ondas mediante espejos parabólicos (que dan lugar a ondas planas) y reflejándolas en varios espejos, logró demostrar que cumplían la ley de la reflexión. Hertz calcula la forma de las ondas que salen de su oscilador, a partir de la ecuaciones de Maxwell para un espacio vacío en el que no intervienen cargas ni corrientes, tal es prácticamente el espacio que rodea al oscilador. Escribe las ecuaciones de forma simétrica relacionando directamente las variaciones temporales y espaciales de los campo eléctrico y magnético. Llamado H al campo magnético y E al eléctrico, las ecuaciones se escriben: Una quinta ecuación básica expresa la energía electromagnética U contenida en cierto volumen V: Resuelve las ecuaciones anteriores para el espacio que rodea su oscilador respecto a cuyo eje el problema tiene simetría de revolución. Obtiene como resultado la ecuación de las líneas de fuerza del campo eléctrico en el plano meridiano que pasa por el eje. El oscilador ha sido idealizado como un dipolo que consta de dos partículas de carga +e y - e, que oscilan a lo largo de ese eje manteniéndose simétricas respecto del centro y alcanzando amplitudes +l y -l. La frecuencia de las oscilaciones (en la práctica centenares de megahertz) está expresada por 2??, y el número de ondas k por el cociente ?/c. Cada línea de fuerza viene fijada por el valor de un parámetro Q, y se expresa en coordenadas polares, la distancia al centro del oscilador r, y el ángulo azimutal ? respecto del eje del oscilador. Hemos visto cómo Hertz, cuyo objetivo inicial era el de comprobar la validez de las teorías eléctricas en el caso de dieléctricos y corrientes no cerradas, descubrió las ondas electromagnéticas predichas por la teoría de Maxwell. La reacción ante tales experimentos no se hizo esperar. La teoría de Maxwell, que hasta entonces había pasado en el continente por una teoría dudosa y oscura, se convirtió de pronto en el punto de partida de todas las posteriores teorías de la electricidad y, por tanto, del espacio y la materia.