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Abstract

Fourier analysis and physical optics are close relatives. On one hand, Fourier

analysis is an excellent mathematical tool for the analysis and synthesis of op-

tical systems. On the other hand, optical systems are extremely efficient in

performing Fourier analysis of signals and images. Both aspects are reviewed

in this paper. For the analysis of optical systems, we invoke a concise notation

based on an operator algebra that has its roots in canonical operator theory.

After a general discussion, several examples of specific optical systems are de-

scribed. The second aspect of the relationship between Fourier analysis and

optics is demonstrated by several signal-processing architectures that exploit

special capabilities of optical systems.

The signal processing applications presented include the optical implemen-

tation of a Fourier transformation, one- and two-dimensional spectrum analysis

and pattern recognition. Since a conventional Fourier transform processor is

space (or time) invariant, space variant signal processing is also addressed.
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1. Introduction

This is, by and large, a journal for mathematicians, but the authors of this paper

are physicists, so two disciplines meet when readers of this journal examine this

paper. Such interdisciplinary encounters can be difficult for all parties but

often worth the effort. We hope this interdisciplinary work will be interesting

to mathematicians in its own right (the operator treatment) and as a motivation

for extending applicable mathematics. One of the major applications of Fourier

mathematics is to analyze optics and one of the major applications of optical

processing is Fourier analysis of one-dimensional (1D) and two-dimensional (2D)

signals with recent extension to three-dimensional signals as well.

Readers interested in current or historical work in Fourier Optics might

turn next to Selected Papers on Fourier Optics [1], which spans 125 years of

technical work in this field. In optics, certain traditional notations exist and

will be used here. Input time or space domain signals are represented by lower

case functions f (~x), g (~x). Their Fourier transforms are represented by the

corresponding capital letters F (~u), G (~u). Complex conjugation is indicated by

a *, and i =
√
−1. Finally, we write Fourier transforms in the form

F (~u) =
∫ ∞

−∞
f (~x) e−2πi(~x·~u)d~x (1)

and

f (~x) =
∫ ∞

−∞
F (~u) e2πi(~x·~u)d~u (2)

All other notation is either explained or transparent.

Fourier methods have been used to describe optics for over 100 years, but

only around the 1960’s was optics used to describe (or perform) Fourier analysis

(O’Neill [2], 1956). The optical generation of Fourier transforms require coher-

ent light and only when lasers were developed in the early 1960’s we had sources

that were simultaneously bright and highly coherent. It was lasers that stim-

ulated Fourier Optics research, and optical processing was considered seriously
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[Cutrona et al. [3], (1960), Tsujiuchii [4], (1960)]. Finally, a key piece of the

puzzle fell into place with VanderLugt’s [5], (1964) introduction of holograms

into coherent optical processing. The wealth of concepts developed since then

is far more than we can convey here.

In this paper we propose a convenient mathematical approach, the majority

of implementational details and subtle nuances. This mathematical approach is

detailed in a book (Shamir [6]) and a series of publications to be cited later. We

note that our field is also blessed by a classic text An Introduction to Fourier

Optics (Goodman [7]), which has been updated and revised by its author and

is a good reference for newcomers to this field. Several other books have been

written, which have strengths different from Goodman’s and can also be recom-

mended (Gaskill [8], Yu [9], Stark [10], Papoulis [11])

2. Fundamentals of optical systems

Fourier optics has a set of broad principles and goals. In well over 95% of the

work, we assume “coherent light” — light that is monochromatic and originates

from a perfect point. Of course, neither condition is physically realizable, but

lasers allow satisfactory approximations.

The first step is to place spatial information onto a beam of (coherent) light.

One good way to do this is to shine the light through or reflect it from a shaped

object. Consider a transparent photographic picture of this page. If we illumi-

nate it with a plane wave (such a wave is described, mathematicaly, by a complex

function which is constant over the xy plane when the light propagates in the z

direction) larger than the picture, the transmitted light is shaped like this page.

Because taking and developing photographs is often too slow or inconvenient,

we seek other means, the most common of which is an electronically or optically

controllable transparency called an SLM (spatial light modulator). These come

in many varieties, modulation mechanisms, modalities, speeds, costs, etc [12].
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For our purposes here, these are irrelevant details. Although we assume a trans-

mission SLM, modification of the discussion for reflective SLMs is trivial.

Light propagation is governed by Maxwell’s equations, which regard light

as an electromagnetic wave. In free space and in most materials, the electric

field and direction of propagation are mutually orthogonal. Thus the electric

and magnetic fields are transverse to the direction of travel. For the sake of

simplicity we assume that the vector nature of the electro-magnetic field can be

ignored and we may employ the scalar approximation. We also assume that all

fields oscillate with a uniform frequency, ω producing ideal coherence.

A propagating wave is expressed as,

e (x, y, z, t) = a (x, y, z) e−i(ωt−~k·~r) ≡ u (x, y, z) e−iωt (3)

where the function u denotes the time independent amplitude and phase of the

electric field (the complex amplitude) and ~k denotes the wave vector in the local

direction of propagation whose magnitude is given by k = 2π/λ. In general,

the wave vector can be a complicated finction of position. ~r denotes the usual

position vector of a point in 3D space with respect to some origin.

The wave frequency is high (0.6x1015 Hz for light in the middle of the visible

spectrum) and our electronic detectors are not fast enough to follow the field

fluctuations directly. Therefore, we can only observe the total intensity of the

wave which is proportional to the time-average of the power incident on a unit

area, which, in turn, is proportional to the squared magnitude of the field.

Therefore, the observed intensity can be represented by,

I = |u (x, y, z) |2 (4)

Note that the complex amplitude has lost critical phase information so we cannot

describe the flow of light through the system in terms of I and we have to

use u. Thus, calculated and measured results are different. A Fourier optical

system seeks to produce an output pattern in which all significant information
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is encoded at the end in intensity and not in phase to make the loss of the phase

information upon detection harmless.

An indication of how phase information can be maintained is by taking two

waves of the same temporal frequency, denoted by u1 (x, y, z) and u2 (x, y, z),

that are present at the same location. The total complex amplitude of the field

is now

u (x, y, z) = u1 (x, y, z) + u2 (x, y, z) . (5)

and the intensity given by Eq. (4) has now the form,

I = |u1 + u2|2 = |u1|2 + |u2|2 + u1u
∗
2 + u∗1u2 (6)

where the variables were suppressed for simplicity. Using the real amplitudes

appearing in the definition of Eq. (3) we have,

I = a2
1 + a2

2 + 2a1a2 cos[(~k2 − ~k2) · ~r] (7)

where it is obvious that the phase information is conserved in the cosine factor.

All representations of light prior to detection are in terms of field vectors. We

can represent a possibly complex function f(x, y) by transmitting an incident

plane wave, u = 1, through an SLM of complex amplitude transmission f(x,

y) positioned in the xy plane. This complex field pattern can then be Fourier

transformed optically or otherwise operated upon.

For purposes of physical realism, the spatial variation of a is assumed to be

much slower than that of the exponential term. Since the factor e−iωt appears

on all sides of a differential equation, it will be ignored hereafter, and we shall

mainly use the complex amplitude, u (x, y, z). Scalar diffraction theory [13] is

usually evoked to describe the propagation of this complex amplitude through

an optical system. A simplified version of diffraction theory is Fourier optics [7],

which is the issue of this paper. For purposes of brevity in this paper we employ

the shorthand notation of an operator algebra. Although operator algebra has
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its foundations within rigorous mathematical frameworks [6, 14, 15], we restrict

ourselves to a heuristic approach [6, 16], which provides a useful physical insight.

2.1. Free space propagation and operator algebra

Electromagnetic field theory does not provide a basis for the existence of a

radiating point source. Nevertheless, for our purpose, we may assume a fictitious

point source that radiates electromagnetic energy in a spherically symmetric

fashion. A point source of unit magnitude located at the origin would emit a

spherical wave with its complex amplitude distribution described by the relation,

O (r) =
1

iλr
eikr, (8)

A radiating object can be represented as a distribution of an infinite number

of point sources. Since Maxwell’s equations are linear, the field distribution due

to several sources will be a linear superposition of the field from all individual

contributions. If the field is generated by a coherent source, we have a linear

system that responds to an input by a linear superposition of its components.

Viewing free space as a position invariant linear system, the spherical wave

of Equation (8) can be interpreted as the impulse response, or point spread

function (PSF) of free space. Accordingly, if the source distribution is given

by a function uin(x ,y, z), the complex amplitude distribution at a different

location can be evaluated by the convolution integral.

uout (x, y, z) = uin (x, y, z) ∗ O (r) (9)

where ∗ denotes the convolution operation. This convolution is, in principle,

evaluated in three dimensions. In most optical systems, however, the source

distribution is restricted to a plane. The output is then detected over another

plane, parallel to and situated at some distance d from the input plane (see

Figure 1). It is convenient, therefore, to choose a coordinate system where light

propagates mainly in the positive z direction and the xy plane coincides with
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the input plane. The output plane is also normal to the z -axis at z = d. Thus,

the convolution integral is carried out over the input plane with x and y as

integration variables. The result will be a function over the output plane, also

with x and y as variables.

Even for this relatively simple system, the convolution integral of Equa-

tion (9) is quite complicated. This, can be substantially simplified if the source

and output regions are small compared to the distance d. In this case we may use

the paraxial approximation that concerns the distance, r which can be written

in the form.

r = z

√
1 +

x2 + y2

z2
≈ z

(
1 +

x2 + y2

2z2

)
. (10)

Whenever the paraxial approximation holds, the PSF of free space can be

reduced to

O (r) =
eikd

iλd
Q

[
1
d

]
, (11)

where we introduced the quadratic phase factor,

Q
[
1
d

]
≡ ei k

2d (x2+y2). (12)

The variation of r within the integration region is relatively small, and is ap-

proximated in the denominator by d. Using Equation (11) for the PSF, the

convolution integral (9) can be rewritten as,

uout (x, y, d) =
eikd

iλd
Q

[
1
d

]
∗ uin (x, y, 0) , (13)

where the convolution is evaluated in two dimensions over the xy plane. Writ-

ing explicitly the convolution operation and resubstituting the quadratic phase

factor, we obtain

uout =
eikd

iλd

∫
ei k

2d [(x−x′)2
+(y−y′)2

]uin (x′, y′, 0) dx′dy′. (14)

This integral is generally known as the Fresnel-Kirchhoff diffraction integral, [7,

13] which can be derived in several different ways.
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Evaluating the squares in the exponent of (14), rearranging terms and re-

substituting the notation for the quadratic phase factor, this expression can be

rewritten to yield

uout (x, y, d) =
eikd

iλd
Q

[
1
d

] ∫
e−

ik
d [xx′+yy′]Q

[
1
d

]
uin (x′, y′, 0) dx′dy′. (15)

In this expression, the quadratic phase factors are considered as operators in

the sense that their variables are to be taken the same as those of the expression

on their right. Continuing this line of argument, we observe that the integral

is a properly scaled, two-dimensional Fourier transformation (FT). To simplify

the notation, we define a generic FT operator by the relation

F [f (x, y)] =
∫

e−2πi[xx′+yy′]f (x′, y′) dx′dy′, (16)

and a scaling operator defined through the relation,

V [a] f (x, y) ≡ f (ax, ay) (17)

that applies to any two-dimensional function f (x, y). By definition, each oper-

ator is assumed to operate on the entire expression on its right, unless indicated

otherwise with the help of brackets.

Substituting the above operators, the diffraction integral can be written in

the shorthand form

uout (x, y, d) =
eikd

iλd
Q

[
1
d

]
V

[
1
λd

]
FQ

[
1
d

]
uin (x, y, 0) (18)

or

uout (x, y, d) = R [d]uin (x, y, 0) , (19)

where the free space propagation operator (FPO) is defined by the relation

R [d] =
eikd

iλd
Q

[
1
d

]
V

[
1
λd

]
FQ

[
1
d

]
. (20)

Two other expressions for the FPO can be derived from Equation (13). First,

one may directly write

R [d] =
eikd

iλd
Q

[
1
d

]
∗, (21)
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Alternatively, we may operate on the whole expression of Eq. (13) by the

FT operator to obtain, employing the convolution theorem [6, 7],

Fuout (x, y, d) =
eikd

iλd

{
FQ

[
1
d

]}
Fuin (x, y, 0) . (22)

Since by Fourier analysis the FT of a quadratic phase factor is also a quadratic

phase factor,

FQ
[
1
d

]
= iλdQ

[
−λ2d

]
F , (23)

we obtain from Eq. (22),

Fuout (x, y, d) = e−iλdQ
[
−λ2d

]
Fuin (x, y, 0) . (24)

An inverse FT on this expression leads to the third form of the FPO:

R [d] = eikdF−1Q
[
−λ2d

]
F . (25)

A complete algebra can be derived for these operators using Fourier analy-

sis [6, 16] or relaying on the more rigorous, group characteristics of these oper-

ators [14].

2.2. Thin optical elements

An optical system is comprised of free space and any number of optical elements.

In this section, we shall only discuss ideal thin optical elements, for purposes of

simplicity. The operation of a thin optical element is determined by its transfer

function T defined by the relation

uout = Tuin. (26)

The operation of a thin lens on an incident wavefront is seldom discussed

in elementary optics books. Rather, propagation of light through space is said

to combine with the operation of a lens to produce an effect such as imaging.

Consider the situation shown in Figure 2, which is described by the most famous
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formula in optics, the thin lens formula

1
a

+
1
b

=
1
f

, (27)

where f denotes the focal length. This does not describe anything but imaging.

It does not say what happens at positions in space other than that of the two

planes located a distance a and b away from the lens. It certainly does not tell

how the lens accomplishes this imaging.

In operator notation, both propagation through space and the thin lens pro-

duce spherical wavefronts. An ideal thin spherical lens belongs to the class of

phase-only optical elements that introduces an additional phase function with-

out modifying the amplitude distribution

Eout (x, y) = Ein (x, y) e−iφ(x,y). (28)

The transfer function of an ideal lens is of this form and can be written as,

T ≡ L [f ] = Q
[
−1
f

]
. (29)

where f again denotes the focal length of the lens.

2.3. Basic optical systems

The simplest useful optical system is composed of a thin lens enclosed between

two lengths of free space (Figure 3). The input distribution is operated on by

an FPO through a distance a. The result is then multiplied by the quadratic

phase factor of the lens and then a second FPO operates through a distance b.

Thus the whole optical system can be represented by a transfer operator, T,

given by

T = R [b]Q
[
−1
f

]
R [a] . (30)

This is a general expression that represents all possible processes that can

be performed by a single thin lens. To analyze a specific system, the operators

can be manipulated using the operator relations and the specific parameters of

the system.
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2.3.1. Imaging with a thin lens

Substituting the representation of Equation (20) for the two FPOs in Equa-

tion (30) we obtain

T =
e−ik(a+b)

−λ2ab
Q

[
1
b

]
V

[
1
λb

]
FQ

[
1
b

]
Q

[
1
−f

]
Q

[
1
a

]
V

[
1
λa

]
FQ

[
1
a

]
, (31)

where the constant factors from the two FPOs were combined. Substituting the

obvious relation

Q [a]Q [b] = Q [a + b] . (32)

we obtain

T =
e−ik(a+b)

−λ2ab
Q

[
1
b

]
V

[
1
λb

]
FQ

[
1
b
− 1

f
+

1
a

]
V

[
1
λa

]
FQ

[
1
a

]
, (33)

It is easy to see that if Eq. (27) is satisfied, the middle quadratic phase factor

reduces to unity since (Q [0] = 1). Subsequently, the two FT operations are

joined together. Using additional, straightforward relations among the operators

results in

T =
a

b
e−ik(a+b)Q

[
1
b

(
1 +

a

b

)]
V

[
−a

b

]
. (34)

Several facts regarding this imaging system operator should be observed.

First, we see that the input distribution is mapped one-to-one onto the output

plane. That is, the object is reconstructed exactly as it was in the input plane

except that it has modified scale and orientation. We say that the image is

magnified by a factor

M = −b/a. (35)

There is also a constant factor, a/b, that adjusts the intensity – the power

per unit area, such that the power integrated over the whole image is the same as

the power integrated over the input plane. Of course, we ignored all losses, such

as are caused by the finite size of the system and reflections off lens surfaces.

In addition to the above factors, there is a quadratic phase distortion that has

positive sign if the distances and focal length are positive. Thus, in a system
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as discussed here, this phase factor will always be present. Later we shall see

that to eliminate the quadratic phase an additional lens is required. Well-known

applications of the single lens imaging system are the human eye, the camera,

and slide or movie projectors. Such applications involve the detection of power

per unit area (irradiance), which is proportional to |u(x, y, z)|2. Thus, as noted

in Section 2, the quadratic phase factor has no direct influence.

2.3.2. Fourier transformation with a thin lens

Returning to the generic transfer operator of Equation (30) we may write the

left-hand side FPO in the form of Equation (20) and the right-hand side FPO

in the form of Equation (25) to obtain

T =
e−ik(a+b)

iλb
Q

[
1
b

]
V

[
1
λb

]
FQ

[
1
b

]
Q

[
1
−f

]
F−1Q

[
−λ2a

]
F , (36)

If we take b = f, the middle Q operators are canceled and then the product

FF−1 is also canceled. Commuting now V with the Q on its right leads to

T =
e−ik(f+a)

iλf
Q

[
1
f

(
1− a

f

)]
V

[
1

λf

]
F , (37)

This is a FT with the proper scale and a quadratic phase factor, which can

be eliminated by taking a = b = f. The physical meaning of this FT is that the

light distribution over this plane represents the spatial spectral components of

the 2-D input signal. Each point over this plane represents a specific 2-D spatial

frequency in analogy to the temporal frequency of time signals. The intensity

distribution over the output plane corresponds to the power spectrum of the

input signal.

A straightforward application of such an FT system is a spectrum analyzer.

Optical spectrum analyzers are commercially available. These analyzers employ

spatial light modulators (SLMs) that are, in principle, programmable electronic

transparencies. In the case of temporal signal processing, a signal is displayed

as a spatial signal using a one-dimensional SLM called an acousto-optic modu-

lator (AOM). In AOMs, temporal signals are converted to ultrasonic waves in
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a transparent material. From the optical perspective, an acoustic wave is thus

transformed into temporally changing density distribution, which modulates the

optical wave.

3. Optical systems with more than a single lens

In the previous section, we considered the generic optical system with one thin

lens. The basic characteristics of a single lens system are not changed by intro-

ducing high quality lenses that compensate for errors introduced by our approx-

imations and other aberrations, the discussion of which is outside the scope of

this paper. As already noted above, a wide range of applications is possible for

this simple optical system. However, it has some intrinsic deficiencies such as

the presence of a quadratic phase factor in the imaging system, image inversion

and limited flexibility for advanced applications.

Considering the single lens system as a building block, more complicated

and versatile optical systems can be constructed by cascading several of these

blocks. It turns out that two lenses are, in principle, adequate to implement

most of the so-called all-optical processes.

3.1. Quadratic phase

We discussed the single lens imaging system and noted that a spurious quadratic

phase exists that cannot be eliminated. As noted above, this is not a problem

in image detection, since the electromagnetic field can only be detected through

the transfer of energy from the field to the detecting system (eye, photographic

film and photoelectronic detectors). Since this energy is determined only by

the squared absolute value of the complex amplitude (square law detection), all

phase factors, including the quadratic phase, are eliminated.

The situation is more complicated if the process does not stop at the image

plane. We have seen that the transfer function of a thin lens is a quadratic phase
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factor. Therefore, on the one hand, an image with a quadratic phase factor is

similar to the input function in conjunction with a lens. When processing of such

an image, this “additional lens” must be taken into account. On the other hand,

it is easy to eliminate the quadratic phase by the addition of a compensating

lens. For example, in the simple imaging system discussed above, there is a

quadratic phase factor with a positive phase. Thus, a converging lens (negative

quadratic phase), having the proper focal length, will compensate the phase

distortion.

In the case of the FT system, we have seen that the quadratic phase factor

can be eliminated by positioning the input function at a distance f from the

lens. Such a system may, however, be longer than convenient. To shorten the

system one may insert the input directly at the lens and add another lens at the

Fourier plane to compensate the quadratic phase distortion. This process is easy

to understand if we consider the FPO using the expression of Equation (20).

This expression, which describes free space propagation for a distance d, has

two quadratic phase factors at its two sides. We may compensate these two

phase factors by putting a lens with focal length f = d at the input of this

space section as well as at the output (Figure 4). We end up with a FT that

is identical, mathematically, with the previous FT, but produced by an optical

system having only half that length. Of course, the price is an additional lens.

3.2. Microscope and telescope

In principle, the microscope is a cascade of two imaging systems (the objective

lens and the eyepiece). A large magnification can be obtained by multiplying the

magnification of these two simple imaging systems, the magnification of which

is limited by technological difficulties. Although the quadratic phase factors can

be ignored when the image is detected, it is good practice to eliminate them at

the various stages of the magnification.
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Another way to generate the image of the input distribution is to perform

two FT operations in succession. If this is implemented by a cascade of two

FT systems, with no quadratic phase distortion, an exact, but inverted image is

obtained. The magnification will be unity if two identical FT systems are cas-

caded. Otherwise, the magnification will be the ratio between the two original

magnifications. This is the basic configuration of a telescope.

Imaging by the use of various optical configurations is the most important

subject of optics. However in this paper, we are mainly interested in signal

processing for which a fundamental modification of the approach is needed.

While in the classical applications of imaging the objective is to operate on the

input distribution and transform it into another, output distribution, in the case

of signal processing, we introduce additional information along the process line.

The best known system of this kind is the optical correlator, which is discussed

in the next section.

3.3. Spatial Filtering

In the microscopes and telescopes just described, the path between object and

final image contains one or more planes where there should be a spatial display of

the Fourier transform of the object wavefront. White light, induces a wavelength

averaging or blurring of the transform pattern, which is also blurred by the

independence (phase incoherence) of light from different parts of the object.

With laser (monochromatic and coherent) light, we can essentially eliminate

such blurring and achieve a clear physical display of a 2D FT of the 2D input

pattern. This allows us to insert a “spatial filter,” which preferentially transmits

some regions of the Fourier plane and preferentially attenuates others.

Most applications of Fourier optics involve spatial filtering and subsequent

propagation. Holography provides a means of operating on the phase of the

Fourier transform as well as its amplitude. VanderLugt [5] formulated the first
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complex (as opposed to real amplitude masks) spatial filters. To observe the

effects of a complex spatial filter, we have to propagate the filtered wavefront,

as noted earlier.

4. Optical pattern recognition

By far the most popular application of optical Fourier analysis is pattern recogni-

tion and localization. The VanderLugt [5] optical processor, sometimes referred

to as the 4f correlator, is the “classical” optical correlator.

An input scene is impressed on a laser beam, then is Fourier transformed

twice causing the output pattern to be an upside down and backward image of

the input: FFf (x, y) = f (−x,−y) In between the input and its image planes,

in the Fourier transform plane, is found

F (u, v) = Ff (x, y) . (38)

According to the shift theorem,

Ff (x− xo, y − yo) = e−
2πi
λf (xou+yov)F (u, v) . (39)

If we place a matched filter mask

m(u, v) = F ∗ (u, v) (40)

in the Fourier plane and f (x - xo, y - yo) in the input plane, the amplitude of

light leaving the Fourier plane is |F (u, v)|2 e
−2πi(xou+yov)

λf . In the output plane

we will observe C ff [the autocorrelation function of f (x, y)] centered on (-xo, -

yo) the image of the centroid of f (x - xo, y - yo). In general, we do not want

a matched filter. Often such a filter is not even defined (Caulfield, Haimes and

Casasent [17]).

A different approach to optical correlation is the joint transform correla-

tor [18] (JTC). In the JTC the input function, F, as well as the reference func-

tion, H, are placed at the input plane of a single FT system that performs a
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joint FT of the two functions. The power distribution of this FT is recorded as

a transparency (either by film or television camera). This transparency is, in

fact, also a kind of hologram with the above-mentioned holographic filter being

a special case. It is easy to show that a FT of the power distribution results in

several terms, two of which represent the correlation between F and H.

There are two problems in optical pattern recognition that have occupied

the researchers’ attention for over 30 years since VanderLugt’s first paper on

optical pattern recognition. First, how do we build the system? Second, how

do we design the filter? Within recent years many of us have come to believe

that both problems are essentially solved. We will address only the filter design

here as it alone deals with Fourier analysis. Before that, however, we must try

to answer a more important question: Why should anyone care? After all, FFT

chips can perform the same task with far greater accuracy.

Historically, optical and electronic Fourier transforms have developed some-

what in parallel. All through that period the speed and capacity race be-

tween them has been close. Here are the advantages of optics. The speed

is strictly I/0 (Input/Output) limited. Most input devices, SLMs, and most

output devices, usually charge coupled device (CCD) detectors, have been bor-

rowed from television applications and hence have been limited to about 20-30

frames/second. However, recent unpublished work in both America and Russia

suggests that 512 × 512 pixel (picture element) SLMs and CCDs running at

1000 frames/second will soon be widely available. In such cases, one could do

one correlation every millisecond with 512 × 512 pixel I/0 frames. Furthermore,

with some optical and mechanical difficulty, one could join four such SLMs and

CCDs to produce a 1024 × 1024 I/0 capability with one millisecond frame time.

Thus the I/0 could run at one GBit/sec. The process itself runs at a much faster

effective rate. For the moment, at least, optics has a throughput advantage over

electronics.

Since the first paper on computer design of pattern recognition filters (Caulfield
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and Maloney [19]), literally thousands of papers have been published and con-

tinue to be published. How can we assert that the problem is solved? It is

fairly simple.We design the filter on-line on a SLM [20]. Experimentally, if we

want to recognize a set of N × N pixel objects, we need a 2N × 2N amplitude

(real-valued) SLM filter or an N × N complex SLM filter. More pixels do not

help, and fewer pixels do not perform as well, per Nyquist, Shannon, Whittaker,

Kotelnikov, etc.

Figure 5 shows a scheme for evolving a filter using genetic algorithms (GA) [21].

Let us choose a figure of merit M that can be measured on such a system. We

start with a set of random masks, evaluate their figures of merit on line, select

two of them stochastically in some elitist method (preferring good performers),

perform crossover, perhaps mutate the offspring, then substitute the new mask

into the set replacing two low performers. Eventually a stable result is obtained

which (in theory only) is the globally optimum mask. In practice, masks so

derived are nearly always excellent, but successively evolved optimum masks

may not resemble each other very much in detail or in performance.

Some of the advantages of this method follow. The same method works for

any figure of merit. Defects in SLMs, optics, CCDs are automatically taken into

account. Masks do not have to be fabricated, inserted, and aligned. The masks

so-designed approach and sometimes achieve global optimality.

5. Space Variant Processing

Fourier optics is attractive because it allows space-invariant filtering. Quite early

in the development of this field, these methods were extended to space-variant

processes [22] [23] [24]. A simple way to analyze space-variant processors is

to double the dimensionality of the filter: e.g. a one-dimensional signal with a

two-dimensional filter. No general method for designing space-variant filters is

offered, but we prefer to use some global optimization method such as genetic
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algorithms or simulated annealing.

As a “sanity check,” we impose the tracking requirement on this system with

the result that the number of free variables is drastically reduced by the needed

imposition symmetry. In fact, to duplicate conventional Fourier filtering results

we wind up with the same number of free variables as a conventional filter.

To achieve space variant filtering, we need to achieve a vast increase in the

number of free variables in our mask. One way to do this is to double the

number of filter dimensions: 1D → 2D or 2D → 4D. For simplicity, we restrict

ourselves to 1D in/out with 2D filtering in between.

Consider F and F−1 as Fourier transform and inverse Fourier transform

operators. They may be lenses, matrices, FFTs, etc., as needed. Likewise

we have, for the moment, a 1D input function f 1D that could be a function

f (x), or a vector ~f1D, etc., as needed. We will go to a 2D version of f by

an operator D↑ that increases dimensionality. We can then do 2D Fourier

operations on the resulting 2D pattern. Finally, we can use an operator D↓ to

decrease dimensionality, i.e. reestablish a 1D output g1D. Symbolically

g1D = D↓F−1
2DM2DF2DD↑f1D. (41)

Here M2D is envisioned as a passive operator [M can stand for Mask or filter

Matrix]. Let us view these as optical operators. Then the net 2D operation is

O2D = F−1
2DM2DF2D. (42)

Let

f1
2D ≡ D↑f1D. (43)

Then

O2Df1
2D = F−1

2DM2DF2Df1
2D

= F−1
2D

[
M2DF2Df1

2D

]
=

[
F−1

2DM2D

]
∗

[
F−1

2DF2Df1
2D

]
= m2D ∗ f1

2D. (44)
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where

m2D = F−1M2D, (45)

and * indicates convolution.

Whatever m2D or M 2D we use results in a convolution. So far no special

properties of m or M are invoked. We thus have

g (x) = D↓ [
m2D (x, y) ∗D↑f (x)

]
. (46)

If we consider the special class of transforms,

m2D (x, y) = m2D (x− y) . (47)

and

D↑f (x) = f (x) I (y) , (48)

we obtain

g (x) = D↓ [m2D (x− y) ∗ f (x) I (y)] , (49)

where f (x) I (y) spreads f (x) uniformly in the y direction. Suppose D↓ simply

represents selection of the y values at x = 0. We should then write

g (y) = [m2D (x− y) ∗ f (x) I (y)|x=0 , (50)

where we have re-introduced the suppressed vertical component to show the

dependence on the vertical stack of filters. Also

m2D (x− cy) ∗ f (x− xo) = I (y) |x=0 = g (y − cxo) , (51)

which is a general formula for a “tracking filter.”

When c = 1, we have again

m2D (x, y) = m2D (x− y) , (52)

the same as Equation (47). In the discrete case, m2D (x− y) is a Toeplitz

matrix.
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In general, the m matrix can be space variant. To assure space invariant

tracking, we require a circulant Toeplitz matrix or, equivalently, a diagonal M2D.

This is the Conventional Spatial Filter or CSF processor. All CSF processors

use a diagonal M2D, that is, they multiply each element of F with some value

but leave the result where it is. Off diagonal terms involve shifts and adds as

well, leading to a more general case that we call a Generalized Spatial Filter or

GSF processors.

Various special cases of the GSF lead to new configurations we will not

explore here. GSF processors for 1D signals are easy to operate optically. For

example

F2Df1
2D = F2Df (x) δ (y)

= [F1Df (x)] I (y) . (53)

where δ (y) is a delta function, only along the y axis.

Going to 2D inputs and outputs requires 4D transforms. If this is reminiscent

of wavelets, it should be. Wavelets are special cases of GSF processors. The

most important thing, however, is that the GSF supports space variant filters.

6. Other Applications

Optical Fourier transforms have been applied to a number of applications other

than optical system design and pattern recognition. These include image pro-

cessing: high- and low- pass filtering, morphological transforms, power-spectrum

analysis (radio-frequency signals), neural networks, and wavelets.

6.1. High-, Low, and Band-pass Filtering

Spatial filtering applications of the Fourier transform processor were developed

to enhance photographs. The optical setup used for high-, low-, and band-pass

filtering of spatial frequencies is identical to the conventional 4f system. The
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filter, usually an amplitude mask, is tailored to transmit the desired spatial

frequencies. Examples are given in Refs. [6, 7, 25].

A high-pass filter emphasizes high spatial frequencies. This type of operation

can be used to detect edges and corners. An optical implementation would

typically consist of an opaque disk covering the center of the Fourier transform

plane.

A low-pass filter enhances the low spatial frequencies, yielding a more blurred

image, while filtering out high frequency noise. For a two-dimensional input such

a filter is typically a circular aperture symmetric about the optical axis.

To obtain a specific range of spatial frequencies, one may construct a band-

pass filter. This will pick out a specific range of spatial frequencies.

Other spatial filters constructed for image processing can be used to extract

lines of specific orientations, by suppressing spatial frequencies in the FT plane

in a line perpendicular to the desired orientation.

6.2. Morphological Transformations

Fourier optical processors are well suited to perform symbolic substitution [26,

27] which is a powerful method for morphological transformations. The optical

implementation of the erosion and dialation operations requires a 4f system

while opening and closing operations require two 4f systems put back to back.

For the opening and closing operations the first stage of the operation uses a

4f pattern recognizer to find all occurrences of a specific pattern. In the second

stage, also a 4f system, a replacement pattern is substituted at the location of

each occurrence of the target pattern, by convolving the output of the recognizer

stage with the Fourier transform of the desired substitute pattern.

For erosion and dilation, the first 4f stage is not required because the pattern

recognition step represents an identity operation. In practice, however, it is

simpler to build a single 8f system for all four basic operations. Note that all
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operations require an optical nonliniarity at the correlation plane, to implement

a thresholding operation. This can be achieved with an optical bistability [28].

6.3. Power-Spectrum Analysis

A one-dimensional Fourier transform processor can be used to obtain a radio

frequency spectrum. The key to such an instrument is the acousto-optic (AO)

modulator [29]. Sound (acoustic) waves are dramatically different from light

(electromagnetic waves). Sound is a periodic disturbance of a medium (air,

water, metal, etc.). At any location in that medium, the pressure (or concen-

tration) changes periodically. On the other hand, light is an electromagnetic

wave not a wave in some physical medium (e.g., the “ether”). Early in this

century Michelson and Morley [30] conclusively disproved the existence of the

ether and opened the door to relativity theory.

Another profound difference is that acoustic waves in a gas or liquid are

parallel to (longitudinal waves), not transverse to, the direction of propagation

(as is the case with light). Acoustic waves may have also a transverse component

when they propagate in solid media. In any case, all waves obey the same basic

wave equation and can be treated the same for many purposes (diffraction,

interference, holography, etc.).

An AO cell is usually made of glass or crystal. An acoustic wave is induced by

piezo-electric transducers located at one side of the cell. The variable material

density in traveling acoustic wave forms a diffraction grating within the AO

material, which is comprised of local refractive index variations

∆n (z, t) = ∆n sin (ωst− ksz) , (54)

where ωs denotes the angular frequency, and ks denotes the wave vector of the

acoustic wave.

When illuminated by a coherent light beam that satisfies the so called Bragg

24



condition,

2λs sin θ =
λ

n
, (55)

where n is the average index of refraction, the angle θ of the incident light

relative to the acoustic wavefronts is a function of the acoustic frequency. Thus

light is scattered into directions corresponding to different frequencies.

The output from the AO cell is then Fourier transformed in one dimension

to obtain the frequency spectrum. Since the Bragg condition is an acousto-optic

version of a thick hologram, however, there is a limit on the maximum allowable

bandwidth. Bragg cell spectrum analyzers have been built with bandwidths up

to 1 GHz and a time bandwidth product of 1000 [31]

If greater bandwidth is required, one can also use an acousto-optic cell in

the Raman-Nath regime. This is an acousto-optic equivalent of a thin phase

hologram. The light is scattered into the ±1st order. Raman-Nath is used with

thinner cells, and is less efficient in coupling light into these orders.

6.4. Neural Networks

All artificial neural networks share one common characteristic: they require a

large amount of interconnections. The 4f optical system provides a simple im-

plementation of space invariant interconnections. Two optical neural networks

that make use of Fourier optical systems are due to Soffer, et al. [32], Owechko,

et al. [33] and Abu-Mustafa and Psaltis [34].

The system proposed by Soffer’s group uses a nonlinear photorefractive crys-

tal to return an amplified phase conjugate of the correlation peak through the

4f system. If this signal now is cycled back through, any cross-correlations will

be damped out, eventually yielding the desired output.

Abu-Mustafa and Psaltis’ system also cycles the information through the

system, but the non-linearity is provided by a pinhole mask in the correlation

plane. Amplification for the next cycle is provided by optically addressed spatial
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light modulator.

Both systems perform well as auto-associative neural networks with noisy

and partial inputs. The Abu-Mustafa and Psaltis system can also be reconfig-

ured to function in a hetero-associative mode.

Both of these optical neural network implementations are of the feedback

type. These same concepts, however, can be generalized to build multi-layered

feedforward systems. In this case the space-invariance of Fourier optical systems

is important. It is much more difficult to build space-variant multi-layered

neural network system.

6.5. Wavelets

A special issue of Optical Engineering [35] and an invited review in the Proceed-

ings of the IEEE [36] have been devoted to wavelet transforms in optics. Optical

Fourier transform processors have been built to obtain wavelet expansions of

scenes. These processors, not unlike those used for morphological transforms

and neural networks, are variants of the 4f system.

The signal to be wavelet transformed is input into the optical system in one

dimension, using an AO cell. It then is Fourier transformed in one dimension,

expanded into two dimensions, and subsequently multiplied by a mask represent-

ing a mother wavelet and several daughter wavelets. These filters are arranged

vertically. The resulting 2D product is now passed through a combination of

spherical and cylindrical lenses. The detector plane output is simultaneously

Fourier transformed and imaged. The vertical coordinate designates the dila-

tion factor, while the horizontal location designates the location.

This allows “triply continuous” wavelet transforms. A continuous (time-

frequency) wavelet transform can be applied to a signal moving continuously

through a time window defined by the acoustooptic cell. This, of course, is

impossible digitally.
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6.6. Fractional Fourier Transforms

Invented by Namias [37] and developed by McBride and Kerr [38] the fractional

Fourier transform can also be implemented by optics [39] [40] [41]. Moreover,

it has been shown [42] that fractional Fourier transforms are just a subclass of

a much wider class of transformations. It is interesting that the nature and

the actual result, of relatively complicated mathematical transformations can

be partly deduced from the corresponding optical architecture.

Returning to the subclass of fractional Fourier transforms, the basic defini-

tion of the α fractional Fourier transform,

F (α) [•] (56)

leads to the relations,

F (0) [•] = [•] ,

F (1) [•] = FT [•] ,

F (α)
[
F (β) [•]

]
= F (α+β) [•] (57)

for α ≥ 0, β ≤ 1.

Like wavelet transforms, Gabor transforms, Wigner transforms, etc. frac-

tional Fourier transforms are mixed time-frequency operators. Except for α = 1,

the time content is not explicitly represented.

Now consider an optical sequential Fourier transform imaging system. Nor-

mally we insert a filter in the α = 1 (Fourier transform) plane. This filter is

time (or space) invariant. Of course, a filter in the α = 0 (image) plane is

fully time (or space) variant. If we place the filter between these planes, it is

partially space invariant. A more intuitive way of saying this is that there is a

neighborhood with diameter roughly d = αA, where A is the input aperture,

over which the filtering is essentially space invariant. Of course, d = 0 in the

input plane (α = 0) and d = A in the Fourier plane (α = 1). In between we

can place filters to allow local space invariance. This is useful, for example, in
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fingerprint recognition. Fingerprints are neither random nor static. Fingers are

plastic and do not produce the same print on all occasions, but local features

stay constant. This suggests α < 1 will be superior to α = 1 for fingerprint

recognition, and our experiments verify this [43].

Recently, we have made digital computations of fractional Fourier transforms

easy by showing how to find a matrix M (α) such that

~F (α) [~x] = M (α)~x. (58)

Thus we can produce a discrete fractional Fourier transform [44]

6.7. Deconvolution

If our output signal is of the form

o = s ∗ b + n, (59)

where s is the true signal, b is a blur function, ∗ indicates convolution and n

is random noise: we can try to restore s by operating in the Fourier domain,

where Equation (59) can be Fourier transformed to produce

O = SB + N. (60)

Obviously, if we had a B−1 filter we could form

O′ = OB−1 = SBB−1 + NB−1 = S + NB−1. (61)

Fourier transforming that would lead to

o′ = s + n ∗ b−1. (62)

That is, we could restore s perfectly except for a problem with the n∗ b−1 term.

Of course, that “small” problem is actually a disaster. Inevitably, b (or B)

will have zeros at which points b−1 (or B−1) will be infinite. The operation of

Equation (61) converts the image to pure noise.
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The Weiner filter replaces

B−1 =
B∗

|B|2
(63)

with

B−1 =
B∗(

|B|2 + |N |2
) . (64)

This prevents such catastrophes, but it is not very effective in real applications.

Recently we (Yaroslavsky and Caulfield [45]) showed that with two or more

blurs with differing zeros, we can restore images quite satisfactorily. These

multiblur filters reduce to the Wiener filter when there is only one blur function.

The Wiener filter, in turn, reduces to the inverse filter when |N|2 = 0.

7. Conclusions

Fourier optics is attractive because of its speed of operation. It is (barely) within

the state of the art to perform a sequence of 1024 × 1024 Fourier transforms,

masking operations, etc., each millisecond.

The question then becomes: What can we do with all of this high speed

processing? We have offered here the preliminary answer the optical computing

community had offered, e.g. pattern recognition, and image processing.

Our community has developed a vast array of mathematical tools largely

without benefit from Fourier mathematics. We suspect that mathematicians

can help us progress further and that we can help you find applications for your

work. We invite this interaction.
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8. Figure Captions

Figure 1. The coordinate system, showing the input plane and the transform

plane

(x, y, 0 ), and the translated plane at (x, y, d).

Figure 2. A thin lens of focal length f =
(
a−1 + b−1

)−1

Figure 3. A single lens optical system. The transfer function consists of a free

space operator, a quadratic phase operator, and a second free space operator.

Figure 4. A two lens Fourier transform optical system.

Figure 5. The 4f optical system used for generating and implementing masks

using genetic algorithms.
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Additional Bibliography

One way to come to grasp with the breadth of optical Fourier methods is to look

at what work is going on with them now. There follows what we do not pretend

to be a complete bibliography of recent papers in this field, but do believe to be

representative.
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