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Reading Assignment: Chapter 5 and 6 and your notes on scattering theory.

Problem 1: Let hn0(n) be the FIR least squares inverse filter of length N with delay n0

for a sequence g(n), i.e.,
hn0(n) ∗ g(n) ≈ δ(n− n0)

The coefficients hn0(n) are the solution to the Toeplitz equations (see p. 174 in Chapter 4)

Rghn0 = gn0 (1)

which may be solved efficiently using the Levinson recursion. Since the value for the delay
n0 that produces the smallest least squares error is typically unknown, to find the optimum
value for n0 these equations must be solved for each value of n0, beginning with n0 = 0.
Instead of using the Levinson recursion to solve these equations repeatedly, it is possible to
take advantage of the relationship between gn0 and gn0+1,
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; gn0+1 =
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to derive a recursion for hn0(n). In this problem we derive this recursion which is known as
the Simpson Sideways Recursion.

(a) The solution to the normal equations Rghn0 = gn0 for n0 = 0 may be found using the
Levinson-Durbin recursion. Show how to generate the solution for n0 = 1 from the
solution for n0 = 0 in less than 4N multiplications and divisions where N is the length
of the inverse filter hn0 . Note that any information generated in the Levinson-Durbin
recursion (for n0 = 0) can be used to construct the new solution.

(b) Generalize the result of part (a) to obtain a recursion that will successively construct
the solution for all n0 > 0. Again your method should have less than 4N multiplica-
tions and divisions at each step.



(c) Write an expression for the error En0 at the n0th step of the recursion in terms of the
coefficients g(n) and the coefficients of the least squares inverse filter hn0(n).

(d) Write a MATLAB program, sideways.m that implements the Simpson sideways re-
cursion.

(e) How can this recursion may be used to find the inverse of a Toeplitz matrix?

Problem 2: An important application of least squares inverse filtering is deconvolution,
which is concerned with the recovery of a signal d(n) that has been distorted by convolution
with g(n)

x(n) = d(n) ∗ g(n)

The problem is to design a filter hN (n) that will produce an estimate of d(n) from x(n),

d̂(n) = x(n) ∗ hN (n)

One of the problems is that noise in the observed signal may be amplified by the filter. For
example, if we observe

y(n) = d(n) ∗ g(n) + v(n)

then the filtered observations become

y(n) ∗ hN (n) = d̂(n) + v(n) ∗ hN (n) = d̂(n) + u(n)

where
u(n) = v(n) ∗ hN (n)

is the filtered noise. One way to reduce this noise is to design a least squares inverse filter
that minimizes

E =
∞∑

n=0

|e(n)|2 + λE{|u(n)|2}

where
e(n) = δ(n− n0)− hN (n) ∗ g(n)

and λ > 0 is a parameter that is to be selected. Note that for large values of λ, minimizing
E will force a large reduction in the filtered noise at the expense of a decrease in resolution,
i.e., larger e(n), whereas smaller values of λ lead to higher resolution and larger noise.

(a) Assume that v(n) is zero-mean white noise with a variance σ2
v . Show that

E{|u(n)|2} = σ2
v hH

NhN

where hN is a vector containing the coefficients of the filter hN (n).

(b) Derive the normal equations that result from minimizing the error

E = eHe + λ σ2
v hH

NhN

where e = [e(0), e(1), . . .]T , and show that they may be written in the form

(Rg + αI)hN = gn0

where α > 0 is a prewhitening parameter that depends upon the values of λ, and gn0

is the vector on the right-side of Eq. (4.101) in your textbook.



(c) Suppose that we have signal, d(n), that is known to have been blurred by a filter
having a unit sample response

g(n) =

{
cos(0.2[n− 25]) exp{−0.01[n− 25]2} ; 0 ≤ n ≤ 50

0 ; otherwise

The signal d(n) is a sequence of impulses,

d(n) =
10∑

k=1

d(k)δ(n− nk)

where the values of d(k) and nk are as listed in the following table.

nk 25 40 55 65 85 95 110 130 140 155
d(k) 1 0.8 0.7 0.5 0.7 0.2 0.9 0.5 0.6 0.3

Make a plot the observed signal x(n) = g(n) ∗ d(n) and determine how accurately the
amplitudes and locations of the impulses in d(n) may be estimated by simply looking
at the peaks of x(n).

(d) Using your m-file sideways.m, design the least squares inverse filter hN (n) of length
N = 50 that has the optimum spiking delay.

(e) Filter x(n) with your optimum spiking filter and plot the output of the filter d̂(n) =
hN (n) ∗x(n). What are your estimated values for the amplitudes and locations of the
impulses in d(n)?

(f) Now suppose that your measurements are noisy, and we have

y(n) = g(n) ∗ d(n) + v(n)

where v(n) is white Gaussian noise with variance σ2
v . Filter y(n) using your opti-

mum spiking filter that you found in part (e), and comment on the accuracy of your
estimates of d(k) and nk using σv = .1, .01, .001.

(g) Incorporate a prewhitening parameter α in your design of the least squares inverse
filter, and modify your m-file simpson.m to allow for noise reduction in the least
squares inverse filter design. Using this m-file, repeat your experiments in parts (d)
and (e) using different values for the prewhitening parameter for σv = .1, .01, .001.
Comment of the effectiveness of α in reducing the noise. What values for α seem to
work the best? Do you observe any relationship between α and σv?

(h) So far, we have assumed perfect knowledge of g(n). Suppose that we design a spiking
filter assuming that g(n) is as given in part (c), but in reality, the blurring filter is

ĝ(n) = g(n) + w(n)



where w(n) is white noise that is uniformly distributed between [−.005, .005]. Repeat
the design of your least squares inverse filter (without any measurement noise, σv = 0),
assuming that the blurring filter is g(n), but using ĝ(n) to generate the measurements

x(n) = ĝ(n) ∗ d(n)

Filter x(n) with your optimum spiking filter, and plot the output of the filter d̂(n) =
hN (n) ∗x(n). How accurate are your estimates of the amplitudes and locations of the
impulses in d(n)? Could you use a prewhitening parameter to improve your spiking
filter design?

Problem 3: Suppose that we would like to study the optical properties of a device consist-
ing of a stack of 3 thin films that have impedances Zi for i = 1, 2, 3. If an electromagnetic
wave is normally incident on this layer of thin films, then there will be a series of reflections
that take place between the thin films. With the zeroth layer being air, and the third
layer having infinite impedance so that it is perfectly reflecting, suppose that the reflection
coefficients are

c0 = 0.12, c1 = 0.15, c2 = −1

where c0 is the reflection coefficient between air and the first thin film, c1 is the reflection
coefficient between the first and second thin films, and c2 is the reflection coefficient between
the second and last thin film.

(a) Find the reflection response R(z) of this system. Explain your result intuitively.

(b) Draw a lattice filter model for this system of three thin films.

Problem 4:
This problem illustrates the use of inverse scattering theory to design broadband termina-
tions of transmission lines. The termination is constructed by cascading p equal travel-time
segments of transmission lines such that the overall reflection response of the structure
approximates a desired reflection response. The characteristic impedances of the various
elements are obtained from the reflection coefficients c0, c1, . . . , cp. The desired reflection
response R(ejω) is given by

R(ejω) =

{
0 ; 0.2π ≤ ω ≤ 0.8π

0.9π ; 0 ≤ ω < 0.2π and 0.8π < ω < π

(a) Using the window design method with a Hamming window, design a M = 21 tap FIR
filter with unit sample response r(k) with a frequency response that approximates the
ideal reflection response R(ejω) given above.

(b) Write an inverse scattering program in Matlab, inverse_scatter, to find the reflec-
tion coefficients c1, c2, . . . , cp corresponding to a given reflection response r(k).



(c) With p = 6, use the your inverse scattering Matlab program to find the polynomials
Ap(z) and Bp(z), and the reflection coefficients c0, c1, . . . , cp from the reflection re-
sponse r(k) that you found in part (a). Plot the magnitude response of the structure,
i.e, plot

|R(ejω)| = |Bp(ejω)|
|Ap(ejω)|

and compare it to the response found in part (a).

(d) Repeat part (c) using p = 2, 3, 10.

(e) Repeat parts (a)-(d) using M = 51.


