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Abstract

It is common for web searchers to have difficulties craft-
ing queries to fulfill their information needs. Even when
they provide a good query, users often find it challenging
to evaluate the results of their web searches. Sources of
these problems include the lack of support for query refine-
ment, and the static nature of the list-based representations
of web search results. To address these issues, we have
developed WordBars, an interactive tool for web informa-
tion retrieval. WordBars visually represents the frequencies
of the terms found in the first 100 document surrogates re-
turned from the initial query. This system allows the users
to interactively re-sort the search results based on the fre-
quencies of the selected terms within the document surro-
gates, as well as to add and remove terms from the query,
generating a new set of search results. Examples illustrate
how WordBars can provide valuable support for query re-
finement and search results exploration, both when specific
and vague initial queries are provided.

1. Introduction

Studies of web search user behaviour have shown that a
large portion of web search queries consist of only one to
three terms [10, 23]. These short queries provide an indi-
cation that users of web search engines often have difficul-
ties crafting queries that accurately reflect their information
needs. Clearly, most web search engines provide little sup-
port for users to refine their queries; it is up to the user to
manually add or remove query terms. As a result of this lack
of support, web searchers seldom make subsequent modifi-
cations to their queries [22, 23].

Even if the users are able to effectively craft a query,
few consider more than three pages worth of search results
[22, 23]. Spink et al. noted that “the public has a low tol-
erance of going in depth through what is retrieved” [23].

This low tolerance may be attributed to the static represen-
tations of web search results that are common in web search
engines, and which require the users to consider each doc-
ument individually, and to some degree, in the order pro-
vided. Most web search engines provide little ability to ma-
nipulate or explore the search results.

In this paper, we present WordBars as a method for sup-
porting the users in the process of interactive query refine-
ment and interactive search results exploration. Our funda-
mental hypothesis in this work is that frequently used terms
in the results of an initial search can provide valuable infor-
mation to the user, both for interactive query expansion as
well as for interactive search results re-sorting and explo-
ration. Information visualization techniques are employed
to convey the term frequency information to the users in a
compact manner that can easily be interpreted and under-
stood.

WordBars retrieves the top 100 document surrogates
from the Google API [5], and counts the frequencies of all
the terms used within the titles and snippets. The term fre-
quencies are sorted and depicted in a visual manner, allow-
ing the users to easily identify the commonly used terms
within the top search results. Single-clicking on any term
re-sorts the search results based on the frequency of that
term. Selecting multiple terms results in a re-sorting of the
search results based on the sum of the selected term fre-
quencies. Double-clicking a term either adds a new term
to the query, or removes the corresponding term from the
query. New search results are retrieved whenever the query
is changed.

A fundamental design principle in the development of
WordBars is the balance between computer automation and
human control [21]. Crafting a query that accurately rep-
resents a user’s information needs is an inherently human
task, as is the evaluation of the search results. While
some have suggested automatically expand users’ queries
[28, 15, 26], we believe human decision making in query
refinement is vitally important. Similarly, most web search
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engines provide automated ranking of the search results
based on complex and proprietary algorithms, such as
PageRank [2]. However, these algorithms result in a static
ordered list of search results. Interactive exploration, draw-
ing upon the user’s understanding of their information need,
can allow highly relevant documents located deep in the
search results to be brought to the attention of the user. This
is especially valuable when the search results consist of a
mixture of relevant and non-relevant documents, which is
often the case.

The interactive web information retrieval features pro-
vided by WordBars allow the users to take an active role
in the information retrieval process, rather than the passive
role that is common in traditional information retrieval. As
such, WordBars can be classified as an information retrieval
support system [30], providing support for the searchers as
they browse, investigate, analyse, understand, and search a
collection.

The remainder of this paper is organized as follows: A
overview of the previous work on query refinement and
search results re-sorting is provided in Section 2. In Sec-
tion 3, an overview of the design and features of WordBars
is given. Two examples for using WordBars to interactively
refine a query and interactively explore the search results
are provided in Section 4. The paper concludes with a dis-
cussion on the merits of WordBars in Section 5, followed
by conclusions and future work in Section 6.

2. Background
2.1 Interactive Query Expansion

Query expansion is the process of adding additional
terms to a user’s original query, with the purpose of im-
proving retrieval performance [4]. Although query expan-
sion can be conducted manually by the searcher, or auto-
matically by the information retrieval system, we focus on
interactive query expansion which provides computer sup-
port for users to make choices which result in the expansion
of their queries.

A common method for interactive query expansion is a
technique known as relevance feedback [17], in which the
users indicate the relevance and non-relevance of entire doc-
uments from the results of an initial search. This infor-
mation is used to construct a new vector-based query with
increased weights on the terms found in the relevant doc-
uments, and decreased weights on the terms found in the
non-relevant documents.

Salton & Buckley [20] conducted an extensive evalua-
tion of the relevance feedback techniques using a number
of test collections, and showed these techniques to be quite
effective. Chang & Hsu [3] clustered the initial search re-
sults, allowing the users to tag entire clusters of documents

(as well as individual documents), thereby improving the
user efficiency in providing the relevance feedback infor-
mation.

One of the problems with applying these relevance feed-
back techniques directly to web searches is that the vector-
based query model that is assumed in relevance feedback is
not readily available for web searching. For a meta-search
systems that use the Google API [5] or the Yahoo API [29],
weighted, vector-based queries are not supported.

Instead, we investigate methods of analysing and pro-
cessing the initial search results, and allowing the users to
choose specific terms to add (or remove) from their query.
This use of the data present in the top search results is of-
ten called local analysis. When users are able to explicitly
remove terms from their query, we call this process query
refinement rather than query expansion to highlight this dif-
ference.

Harman [6] provided three different lists to the user from
which they could select additional terms to add to their
query. The first list contained terms found in the first ten
documents returned from the initial query, sorted based on
various statistical techniques. The second list consisted of
linguistic variations on the query terms. The third list was
based on the co-occurrence of terms within the entire collec-
tion. The results reported from this work were good when
users made perfect choices from the lists of available terms.

Applying the fundamentals of this technique to web
search is somewhat problematic, especially for meta-search
systems. Collecting the common terms used in the first ten
documents returned by the initial search would require re-
trieving these documents from their source, introducing a
delay that would not be well received by searchers that are
used to near-instant response times. The utility of the list
containing variations on the query terms is questionable.
Generating the third list is not feasible due to the size of
the collection (in the order of billions of documents).

Joho et al. [11] generated a hierarchy of query expan-
sion terms from the set of retrieved documents, and pre-
sented these to the user via cascading menus. Although
there is value in deducing and representing the relationships
among terms within the search results set, their process re-
quires access to the contents of the entire documents within
the search results, which is not feasible for interactive web
search systems.

Our work on WordBars follows the local analysis tech-
niques employed by Harman in the first list of terms. How-
ever, instead of collecting terms from the first ten docu-
ments returned from the initial search, we collect terms
from the titles and snippets of the first 100 document sur-
rogates. Further, we use a simple frequency statistic, rather
than the statistical techniques described in Harman’s work,
most of which require access to the term frequencies within
the entire document collection.
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2.2 Search Results Re-Sorting 3.2 Visual Representation of Term Frequencies

The re-sorting of search results based on web search per- While some previous systems have used simple textual
sonalization is a rather active research field [24, 25, 16]. lists to provide recommendations for additional terms to add
These systems generally provide an automated re-sorting to the query [6], providing additional information about the
and filtering of the search results based on the personalized terms in a visual manner can be extremely beneficial. For
profiles of the users. There appears to be little research on example, Joho et al. [11] showed benefits to using a cascad-
interactive tools to allow the users to control the re-sorting ing menu representation of the query expansion terms. In
methods, in personalized systems or otherwise. WordBars, we opted for a simpler representation that both

In our previous work on HotMap [7], we allowed the allows the user to browse the available terms, as well as per-
users to re-sort the search results based on the frequen- ceive and interpret the relative frequencies of these terms in
cies of the query terms within the search results. In our the top search results.
work on Concept Highlighter [8], we re-sorted the search The visual representation of the term frequencies con-
results based on fuzzy membership scores with relation sists of a vertically oriented, colour-coded histogram. Both
to user-selected concepts. In both of these systems, we the sizes of the bars in the histogram, as well as the inten-
found that the re-sorting features brought to the attention sities of the colours, represent the frequencies of the com-
of the searcher highly relevant documents buried deep in monly used terms in the top search results. Using multiple
the search results, and proved to be an effective method for  visual features to represent the same data attribute provides
exploring the search results. redundant coding, and results in an increase in the ease,

speed, and accuracy in which the the users are able to per-
3. WordBars ceive and interpret the information [18]. The colour scale

was chosen to vary both on the red-green colour channel, as
The design of WordBars is best explained with respect well as the luminance channel. Visually, this colour scale

to three primary features: the meta-search and processing appears to be a heat scale, resulting in high frequency terms

of the search results, the visual representation of the term ~ @Ppearing hot, and low frequency terms appearing neutral or

frequency information, and the interaction features that are ~ Warm. The colour scales used in WordBars were generated

supported by the system. The details of these features are using the ColorBrewer application [1].

described in the remainder of this section. The term labels are provided to the right of each fre-
quency bar. All the terms that are present in the query are

3.1 Meta-Search and Term Frequencies coloured red; all others are black. This use of colour allows

the users to easily identify their query terms within the his-
togram, as well as identify frequently used terms that are not
present in the query. Further, these colour distinctions can
be pre-attentively processed [27], allowing the near-instant

WordBars is a meta-search engine that makes use of the
services of the Google API [5] to retrieve the web search
results. Upon submitting a query to the system, the top o A
100 search results are obtained. This occurs in blocks of recognition of the distinction between the query terms and

10 document surrogates at at time, due to a restriction in the the other terms. . .
Google API. Due to space considerations, only the 20 most frequently

used terms are displayed in the term frequency histogram.
While there may be relevant terms beyond this cut-off mark,
we assume that the most beneficial terms are those that are
used most frequently within the top search results.

A grey box is used to indicate which terms the user has
selected for re-sorting the search results. This provides a
quency of each stem in the document descriptor is counted, simple yet effgctive method for indicating Fhe current state
and this number is added to both a master vector that repre- for the re-sorting of the search results. Figure 1 shows a
sents the term frequencies in the entire set of search results, visual representation of the term frequencies for a sample
and a local vector, which represents the term frequencies query.
within the current document surrogate.

After processing each document surrogate, the master 3.3 Interaction
vector is sorted to ensure that the most frequent terms are

As each block is retrieved, the title and snippet from each
document surrogate are combined in a bag-of-words ap-
proach resulting in a document descriptor text string. Com-
mon terms, as well as terms that are less than three charac-
ters long are ignored. All other terms are reduced to their
root forms using Porter’s stemming algorithm [14]. The fre-

always located at the top. This vector is used as the basis As the search results are retrieved from the Google API,

for visually representing the term frequencies, as explained the document surrogates are automatically loaded into the

in the following section. document list window, and the term frequency histogram
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Figure 1. The visual representation of the
term frequencies histogram allows the users
to easily identify the frequency of the terms
used in the search results, which terms are in
the query (in the red font), and which terms
are currently being used to sort the search
results (in the grey boxes).

is updated as each document surrogate is processed. This
has the effect of providing an animation of the growth and
re-sorting of the terms used in the search results. A video
showing this animation, as well as a complete usage sce-
nario, is available on the author’s web site!.

Once data begins to be displayed in the term frequency
histogram, the user can interact with this interface by either
single-clicking or double-clicking a term. These simple in-
teraction methods were chosen to reduce the learning curve
associated with using WordBars.

Single-clicking is used to initiate a re-sort of the search
results displayed in the document list window based on the
frequency of all the currently selected terms. Clicking a
term toggles its status between selected and not selected.
Selected terms are easily identified by the grey box sur-
rounding them. This simple process allows the user to inter-
actively explore the search results based on the terms they
feel are relevant to their information needs.

Double-clicking is used to add or remove terms from the
current query. All terms that are in the current query are
displayed in a red font in the term frequency histogram.
Double-clicking on any of these will remove that term from
the query and will retrieve the search results of the new
query. Double-clicking on any term that is currently not in

lhttp://www.cs.uregina.ca/ hoeber/WordBars/

the query will add that term to the end of the query and will
load the search results of the new query. This feature allows
the users to easily refine their query based on the terms that
are present in the current set of search results.

Within the document list window, the search results are
displayed in a list-based representation that is similar to that
used by the major search engines. The document number
from the original order of the search results provided by the
Google API is included to highlight the effects of the re-
sorting features. Clicking on any document will open that
document in a new window, and will change the link colour
from blue to purple (as per the defacto standard for visited
links in a web page). This allows the users to easily iden-
tify documents that have already been visited, even after the
search results are subsequently re-sorted by the user.

4. Examples

To illustrate the utility of WordBars in supporting the
user’s tasks of query refinement and search results explo-
ration, we provide two examples: one with a specific initial
query, and one with a vague initial query.

4.1 Specific Initial Query

In general, when a user is able to provide a specific ini-
tial query that accurately reflects their information needs,
web search engines do a very good job of providing highly
relevant documents within the first few pages of the search
results. Even in these situations, there is a benefit to using
WordBars.

By providing a term frequency histogram to represent the
commonly used terms in the top search results, the users can
easily verify that their initial query is indeed returning docu-
ments that are relevant. In these situations, many of the top
terms in the histogram should be relevant to the user’s in-
formation need. Further, by providing a visual indication of
the frequency of the terms, the users can easily interpret the
relative frequency differences between terms. In addition,
the user may use the term frequency histogram to re-sort
the search results to further focus on a particular aspect of
the information need, or even add new terms to the query,
resulting in a search that is even more specific.

Suppose the user starts with a specific initial query “li-
brary automation storage”. By reviewing the top terms pro-
vided in the term frequency histogram, the user can easily
verify that many of the documents are relevant to their in-
formation need (Figure 2a). The user can easily focus on a
specific aspect of the search results, such as “network” and
“software” by clicking on these terms in the histogram (Fig-
ure 2b). Alternately, the user may choose to select the term
“backup” to obtain a different sorting of the search results
(Figure 2c¢). The user may decide to add this term to their
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Figure 2. An example of exploring the search results and further refining a query when a specific

query is provided as a starting point. Note the re-sorted search results in (b) and (c).

query by double-clicking on it, generating a more specific
set of search results (Figure 2d).

From this example, it is easy to see the value of being
able to re-sort the search results, as well as refine the query,
using simple interaction features on the term frequency his-
togram. The ability to easily interpret the meaning of the
histogram features allows the user to focus on determining
the relevance of the terms in the term frequency histogram,
and use this information for interactive query refinement

and interactive search results exploration. help the user improve their query.

choosing a query term that is inherently vague. The search
results for a vague query are often vague themselves. Some-
times these search results will all be relevant to some gen-
eral topic that is clearly not specific enough to satisfy the
users information needs; other times, the search results may
be relevant to two or more very different topics. In these sit-
uations, users tend to spend a lot of time considering doc-
ument surrogates that are not relevant to their information
need. Further, web search engines provide little support to

With WordBars, the users can benefit from being able to

4.2 Vague Initial Query

easily browse the commonly used terms in the search re-

sults. Vague search results can be identified by the high fre-

It is common for users to provide vague queries for their
web searches. This could be due to incomplete knowledge
on the topic of interest, a desire to explore a general topic, or
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Figure 3. An example of exploring the initial set of search results, and subsequently refining a query

when a vague query is provided as a starting point.

of which use different terms in their descriptions.

Users of WordBars benefit from the support the system
provides as they re-sort and browse the search results. If
relevant documents are found near the top of the list after re-
sorting the search results, the selected terms can be added
to the query, and other less valuable terms removed. The
end result is that the user can first consider documents that
make use of a potential new query terms, and then easily add
these terms to the query. All this interaction occurs within
the same interface, allowing the user to readily flip back
and forth between their task of search results exploration
and their task of query refinement.

Suppose the user starts with the vague initial query:
“document clustering”. Clearly, the query terms are used
frequently; but few other terms are used consistently in the
search results, indicating vagueness of the search results

(Figure 3a). The user can explore the search results by se-
lecting terms that are better descriptors of their information
need, such as “hierarchical” and “documents” (Figure 3b).
If the top documents are relevant, the user may choose to
add these terms to the query by double-clicking on them
(Figure 3c). The user may decide that some of the query
terms are not very descriptive, and may choose to remove
these, such as “algorithms” (Figure 3d).

Like the previous example, there is value in being able to
re-sort the search results, as well as easily add and remove
terms from the query. The terms presented in the term fre-
quency histogram can easily be considered for relevance,
and can be used to focus on a subset of the search results
that are relevant to a specific sub-topic (i.e., by re-sorting
the search results), or focus the query itself on this aspect
(i.e, by adding the term to the query).
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In both of these examples, the users are provided with
a visual indication of the term frequencies, and are able to
take advantage of their human intelligence as they use this
information to both interactively explore the search results,
as well as interactively refine their queries.

5. Discussion

The first thing to note regarding the use of WordBars is
that there is little ability to support the users in their in-
formation seeking tasks when a very poor initial query is
provided. If no relevant document surrogates are returned
within the top 100 search results, then the ability to explore
the search results is of little value to the user. The terms that
are common among these top search results will likely not
be relevant to the user’s information need, making it diffi-
cult for them to choose from the list. However, the lack of
relevant terms in the term frequency histogram may indicate
to the user that they need to start with a better initial query
than the one provided.

Supposing that at least some of the document surrogates
returned from the initial search are relevant, WordBars can
be very beneficial in assisting the users in their information
retrieval tasks. The term frequency histogram provides a vi-
sual indication to the users of the relative frequencies of the
terms used in the top document surrogates from the search
results. The users may re-sort the search results based on
the terms that are most relevant to their information need,
or even add these terms to their query to generate a more
specific set of search results.

One of the benefits of providing a list of commonly used
terms in the top search results is that it allows the users to
recognize terms from the list, rather than having to recall
relevant query terms for a given topic. Recognition rather
than recall is provided by Nielsen as one of the primary us-
ability principles [13]. In WordBars, this allows the users
to begin with a somewhat vague query, and then use their
recognition ability to add additional terms to the query, re-
sulting in a refined query that did not require the user to
remember the specific terms that are relevant to their infor-
mation need.

The term frequencies in WordBars are generated from a
subset of the actual document: the title of the document, and
the snippet provided by the Google API. The title is often
descriptive of the information within the document, and the
snippet contains contextual information regarding the use of
the query terms within the document. These both provide
valuable information about the documents in the search re-
sults, and may even produce a better list of terms than if the
entire textual documents were considered.

Since only a simple pre-processing of the title and snip-
pet are performed, it is possible for terms that are not mean-
ingful to appear in the term frequency histogram. For exam-

ple, the word “two” may appear somewhat frequently in the
top search results for a given query, even though this word
is not meaningful for search results exploration or query re-
finement. While it is possible to add such terms to the stop-
words list, in some situations, these terms may be relevant
and meaningful. As such, the stop-words list is limited to
commonly used verbs, adverbs, pronouns, and prepositions.

In previous work, we made use of an external knowledge
base both for query refinement [9] as well as search results
exploration [8]. WordBars is much more flexible, since it
does not require the existence of an independent knowledge
base. All the information provided to the user to support
their information retrieval tasks is derived from the initial
search results. This allows the users to benefit from this
system, as long as their initial query includes some relevant
documents.

Even when presented with a list of potential terms to add
to a query, research has shown that users may still have dif-
ficulties choosing good terms from such lists [19, 12]. How-
ever, in these studies, the query terms were presented to the
users in a simple list. WordBars provides a visual represen-
tation of the frequency of the terms, as well as an indication
of which terms are present in the current query. Further, the
ability to re-sort the search results can allow users to see
how potential query expansion terms may be used. This ad-
ditional information can allow the users to make informed
decisions for query expansion that would not be possible
when simply considering terms in a list.

6. Conclusions and Future Work

In this paper, we have presented our work on the devel-
opment of an information retrieval support system that al-
lows the users to interactively explore web search results,
as well as interactively refine their queries. Although these
tasks are fundamentally different, they are supported within
the same user interface, allowing the user to easily transition
back and forth between them. The visual representation of
the term frequencies, and the interactive nature of the sup-
port tools provided allows the users to take advantage of
their intelligence and judgement abilities as they perform
their information retrieval tasks using WordBars.

Through the visual representation of the term frequency
histogram, the users can easily identify the relative frequen-
cies of their query terms in the top search results, as well as
the relative frequencies of other terms present in the docu-
ment surrogates. ldentifying terms in this list can help the
user to understand the general makeup of the search results,
as well as the degree of specificity of their initial query.
Terms can easily be selected, resulting in a re-sorting of
the search results based on the frequencies of the selected
terms. This assists the users in exploring the search results.
Terms can also be added or removed from the query, auto-

IEE l-'

COMPUTER
SOCIETY

Proceedings of the 2006 IEEE/WIC/ACM International Conference
on Web Intelligence (Wl 2006 Main Conference Proceedings)(WI'06)
0-7695-2747-7/06 $20.00 © 2006 IEEE



matically generating a new set of search results from which
the user can further explore.

Although the techniques used in this work are rather sim-
ple, there is a benefit to the users for this simplicity. The
interface is uncluttered, easy to learn, and simple to use.
There are no complex interactions required to re-sort the
search results, nor to add or remove terms from the query.
The frequency statistics are calculated interactively as the
search results are retrieved from the Google API, resulting
in a minimal delay. These statistics are easy for the users
to make sense of, and result in a meaningful ordering of
the terms present in the search results. The visual display
of this information allows the users to easily, quickly, and
accurately perceive and interpret the term frequencies, and
make use of this information through interactive query re-
finement and interactive search results exploration.

The current prototype system only supports a simple list
of terms in the query. In future work, we wish to support
more complex queries, including the ability to require or
exclude specific terms in the search results. Further, the
ability to personalize the search results based on terms se-
lected through this interface will be investigated. A user
evaluation of WordBars is currently in the planning stages.
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