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We’'re interested in
using keywords and
visual content
together in image
retrieval. We used a
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querying and
relevance feedback
scheme based on
keywords and low-
level visual content,
incorporating
keyword similarities.
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algorithm for a
learned word
similarity matrix and
conducted
experiments that
validated our
approach.
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s an interdisciplinary research field,

multimedia information retrieval

addresses and explores both text-

based indexing and processing
issues and multidimensional signal/information
processing techniques.

The performance of a content-based image
retrieval (CBIR) system is inherently constrained
by low-level features, and it can’t give satisfacto-
ry retrieval results in many cases, especially when
users’ high-level concepts aren’t easily expressed
by low-level features. (Please see some of the
other resources!? we’ve cited for state-of-the-art
attempts in associating low-level features with
high-level semantic concepts and their limits.)
Therefore, for real-world applications, CBIR sys-
tems should feature textual annotations to
improve the retrieval performance.

In this article we explore the unification of
keywords and feature contents for image
retrieval. We propose a seamless joint querying
and relevance feedback scheme based on both
keywords and low-level visual contents incorpo-
rating keyword similarities. We propose an algo-
rithm for the learning of the word similarity
matrix (we use word, term, or concept similarity
matrix interchangeably throughout this article)
during user interaction, namely word association
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via relevance feedback (WARF). We can apply
this learned similarity matrix, specific to the data
set and the users, for keyword semantic grouping,
thesaurus construction, and soft query expansion
during intelligent image retrieval.

Integrating keywords and contents

In the area of CBIR, despite advances in fea-
ture selection algorithms and matching and
retrieval techniques, current systems still have
major difficulties relating low-level features to
high-level semantics. From our extensive exper-
iments on CBIR systems using features such as
color, texture, structure, spatial layout, and rele-
vance feedback from users, it’s apparent that low-
level contents often don’t describe the high-level
semantic concepts in users’ minds. This is one of
the major burdens in implementing a CBIR sys-
tem for practical image retrieval applications. To
overcome this burden, we should unify text-
based retrieval with content-based retrieval.
Actually, most of the online commercial image
databases are annotated with keywords and
descriptions or organized into categories. Some
researchers have addressed this problem from
various standpoints,®® but no one has focused on
the issues of online learning of term similarity
matrix and word grouping for intelligent query
expansion, which we emphasize in this article.

Keywords have more direct mapping toward
high-level semantics than low-level visual features
such as the color histogram or texture co-occur-
rence features, but the mapping isn’t one-to-one
because of the context-dependent interpretation
of words and/or the use of synonyms. The system
needs a thesaurus during the retrieval process,
otherwise the keyword-based retrieval will be lim-
ited. This process depends on the consistency of
the annotation, the consistency between the user
and the annotation, and even the consistency of
users at different times. We can use existing
general-purpose thesauri in the system, but these
thesauri may contain too much redundant infor-
mation yet lack relevant information to the spe-
cific data set or to users’ preferences. This brings
us to the issue of automatic thesaurus construc-
tion from an image database.

In document processing literature, there’s
been extensive research on how to automatical-
ly construct thesauri, but all of these are based on
the statistical analysis on term occurrences and
co-occurrences in a particular document collec-
tion.%” These techniques, relying mostly on the
co-occurrences of related terms within one doc-
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ument, don’t apply to image databases, where
the annotation is usually concise. In other words,
semantically similar terms don’t occur in the
annotation of the same image. For example,
assuming you have a cat named “Socks,” you
may have annotated one photo as “Socks playing
with its tail” and another as “Our cat on the
sofa.” For the system to figure out that Socks is a
cat, one possible way is to look at annotations
across images that we know are somehow relat-
ed semantically. One way of obtaining semanti-
cally related images is to look at the relevant
images fed back by users during an interactive
image-retrieval process.®

The proposed method

We assume that some of the images in the
database have textual annotations in terms of
short phrases or keywords. These can come from
pattern recognition,! automatic speech recogni-
tion, keywords spotting from text (such as sur-
rounding HTML text on Web pages), manual
annotation, and so forth.

We propose an algorithm for semantic group-
ing of keywords based on user relevance feedback
during the retrieval process. The result facilitates
the unification of keywords and contents in a
flexible and meaningful way. During each user
retrieval and feedback process, the algorithm will
dynamically update the weights in a semantic
network consisting of the keywords in the data-
base. This algorithm runs automatically in the
background with little computational overhead.

After users have queried the database, the out-
put of the algorithm (such as the weights
between pairs of terms) will correspond to either
the similarity of the two terms or the estimated
probability for users to request these two terms
together in one query. By using Hopfield network
or clique detection, we can further group terms
into semantic classes, which can assist future
retrieval processes.

In addition, since the algorithm extracts this
knowledge from the user feedback, we can also
regard the term association information as the
users’ search habits or preferences. Therefore, this
real-time thesaurus construction algorithm based
on user feedback will provide a practical way not
only for grouping keywords semantically but also
learning user preferences.

Background and assumptions
Research in document processing literature
provided various methods for knowledge discov-

ery. Many of these approaches represent the
knowledge using a semantic net, where the
nodes of the network represent different types of
concepts and the weighted links among the
nodes indicate the relevance among the con-
cepts.®” One form of weight computation is as
follows:
n
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where d; is a boolean variable with values 1 or 0,
indicating whether term T; is in document i; dy,
indicates whether terms k and j are in document
i. Most of the weight computation techniques
build on the concepts of term, document, and
inverse document frequency in a particular doc-
ument collection.

In image databases, it’s inadequate to directly
adopt these co-occurrence-based estimation
methods because of the lack of co-occurrence of
semantically similar terms in the annotation of a
single image. Therefore, we must rely on a group
of images—such as the set of feedback images
from users during the retrieval process—to esti-
mate the relevance between keywords or terms
for the automatic construction of thesauri.
Nevertheless, we can regard the proposed algo-
rithm as a natural extension of the pseudoclassi-
fication techniques in the text-processing
domain’ into the content-based image retrieval
domain, with differences not only in the appli-
cation domains but also in terms of how the rel-
evance feedback is processed and whether it’s a
dynamic online process.

The proposed algorithm jointly considers the
relevant and irrelevant images in a computa-
tionally efficient way (instead of in an iterative
way,” which can be computationally expensive).
In addition, the weight adaptation is in real time
and dynamically follows users’ retrieval prefer-
ences. It isn’t a once-for-all process as in the case
of pseudoclassification techniques in the docu-
ment retrieval domain. The effectiveness of these
techniques in the document retrieval domain is
usually questionable once outside the special



cases in which they’re generated.” It takes time to
read through a collection of documents, but
images reveal their contents to users instantly.
To use relevance feedback to facilitate the the-
saurus generation, we assume that the low-level
features can represent the high-level semantics in
a reasonable if not perfect way. That is, a subset
of similar images in terms of semantics should
appear in the top returns with certain (nonzero)
probability. For low-level contents, the widely
used features include color, texture,®° shape,
structure,** and so forth. In our experiments, we
used a feature space of 37 dimensions with nine
color moments, 10 wavelet moments,® and 18
edge-based structure features'! (see Figure 1).

Joint querying and relevance feedback

To combine the use of low-level visual featuers
with keywords, we convert keyword annotations
for each image into a vector, with components v;
indicating the appearance or probability of key-
word j in image i. When v;; 0 {0,1}, we say it's a
hard vector representation; when v; 0 [0,1], we say
it’s a soft vector representation.

Soft vector representation of keywords

We use a soft vector representation for keyword
annotations. We assume that a keyword similarity
matrix {S;, i, j = 1, ..., M} is available, with a total
of M keywords, where §; = 1, and §; < 1. This
matrix can be symmetric or asymmetric, depend-
ing on the application and usage. Let |; be the jth
component of an M-dimensional hard vector rep-
resenting the keyword list for the ith image, such
as I; = 1 if the ithimage has the jth keyword in its
annotation, and zero otherwise. Then we define
the soft vector representation for the ith image as

Vij = mMax g 1 5 3

Equation 3 says that term j can represent image i
with a probability no higher than its association
with the most relevant term in i’s annotation.

A subtly different choice could be

Vi = min {, T2 S} (4)

where U is a value close to 1. The rationale here
is that if several terms imply a new term j—
although by weak association, but with a sum
near (or over) 1—then the new term j is strongly
implied in image i.

We could argue that an alternative way to
model keyword relationships is to perform query
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expansion on the user query on the fly instead of
keyword expansion for each image. We believe
this approach isn’t as reasonable as ours because,
for example, the user queries for “car”—with the
possible expansion of the keyword “car” into
“Ford Taurus,” “Toyota Camry,” and so on—is
enormous, while the database may only have
“Taurus” in it. This is especially true for databas-
es with an uncontrolled vocabulary.

This soft representation has the ability to
model synonyms or a keyword set of hierarchical
structures. For example, the system can link the
current user-specified query keyword (“car”) to a
broader or a more specific one (“Ford”) in the
database automatically.

Another way of modeling relationships
among keywords is to apply linear multidimen-
sional scaling (MDS)*? on the word similarity
matrix to arrive at a low-dimensional space or use
nonlinear techniques such as locally linear
embedding to construct such a space.*® In these
approaches, a point represents each word, and it
preserves their mutual distances as much as pos-
sible. These schemes have the advantage of com-
pact feature representation with a small
dimensional feature space, but they lose the
semantic meaning of the axes. More important-
ly, they have poor scalability. For example, with
new keywords the MDS procedure has to be
repeated and the new lower-dimensional embed-

, car,

“Parents
shopping center, ...

Figure 1. An image
object with both
content and keyword
descriptors in our
system.
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Figure 2. We assume users are looking for a specific red bridge, while the system only has the keyword
“bridge.” (a) Using the keyword “bridge,” the system returns many different bridges, not necessarily what
the user is looking for. (b) When the system uses a red bridge with only feature contents, we get images
that are visually similar but semantic nonsense. (¢) Combining the keyword and examples, the system
returns all four occurrences of the red bridge in the database. (d) An illustration of the distribution of

images in the feature space.

ding can differ from the previous one, even with
a relatively small number of new data. However,
in our scheme, the insertion of new words is a
simple linear incremental process.

Joint global similarity search

For traditional database approaches, the key-
word-based search gives a binary decision—and
a content-based search becomes simply a simi-
larity search within a subset of the database with
certain keyword constrains. We propose a joint
querying and relevance feedback scheme based
on a joint global similarity search on both key-
words and feature contents.

With the soft vector representation, we con-
vert the keyword list of an image into a vector,
which becomes comparable to a feature vector
extracted directly from the image based on con-
tents such as color, texture, and edge or structure

(see Figure 1). The algorithm supports various
query modes. For example, when users select the
jth keyword, it sets the jth weight to be large
while setting weights on other keyword compo-
nents to be zeroes (that is, “don’t care”). For fea-
ture content vectors, if users don’t specify any
example query images, the algorithm uses a ran-
dom vector and sets the feature weights as ones
(Figure 2a). The randomness provides users with
a random browse option for wandering around
different parts of the feature space. When users
also select the ith image as a query in addition to
the keyword selection, the query uses its content
vector while it resets its keyword vector to reflect
the users’ keyword selections—this is the joint
keyword and example query with one example,
such as “give me ‘bridge’ images that look like
this one” (Figure 2). When users select multiple
examples, the algorithm applies the relevance



feedback technique'**® to learn an optimal trans-
formation in the augmented feature space for
both keywords and visual contents so that it can
further improve retrieval results.

This learning process also involves the keyword
vector. So, for example, if all the positive examples
have annotations of “Taurus,” “Camry,” and so
on, with a proper concept similarity matrix (we
discuss this matrix in the “Learning Semantic
Relations between Keywords” section) the system
can figure out that this user is looking for car
images. Then it will return images with annota-
tions related to cars, even though they can be visu-
ally different. We can’t achieve this by relevance
feedback in the visual feature subspace alone. In
Figure 2c, the four bars under the title of “high-
level weights” correspond to color, texture, struc-
ture, and keywords. The fourth bar (the longest)
indicates that the system has learned from multi-
ple examples that the annotation is the most
important descriptor to use for this task.

In summary, the proposed scheme treats the
keyword annotations in a soft way rather than
the rigid treatment in a traditional text-driven
database and unifies the keyword and content
vectors in a transparent way for the user to facil-
itate joint querying and relevance feedback.
Query expansion is a natural by-product of the
relevance feedback process. The prerequisite for
this scheme is that it needs a term similarity
matrix.

Learning semantic relations between
keywords

For an image database such as a personal dig-
ital photo album, users can add text annotations
either by hand or by an automatic speech recog-
nizer. Alternatively, for a dynamic image data-
base on the World Wide Web, keywords can be
extracted from the surrounding or related text.
Then keyword-based retrieval is possible.

However, problems arise when different yet
semantically similar keywords are assigned (by
different people or by the same person but at dif-
ferent times) to similar images or when the user
fails to use the exact wording as the one used for
the images in the database. Obviously, we need
a thesaurus to resolve term association problems.

One option is to use standalone thesauri.
However, the major problem is that they usually
contain too much redundant yet imprecise infor-
mation. More importantly, data-dependent
information, new knowledge, or user-specific
knowledge in general doesn’t exist in any gener-

al-purpose thesaurus. For example, an evolving
Web-based news image database should provide
a strong semantic link between “anthrax” and
“terrorism.” In this case, hand annotation or
online learning is necessary because this is a piece
of new information that isn’t encoded in any
existing thesauri.

Therefore, we propose automatic thesaurus
construction—or more precisely, word associa-
tion—based on user relevance feedback during
the retrieval process. The assumption is that
some images in the databases have keyword
annotations. During the browsing or content-
based retrieval process, the system can take rele-
vance feedback from the user, which is
essentially the set of images that users regard as
relevant out of all the images. Based on this infor-
mation and the annotations for both the relevant
and irrelevant images the system retrieves, the
system can apply an updating formula as
described in the following section to increment
the similarity or closeness among all the key-
words assigned to the current images.

WARF

The relevant set of images generated from a
query contains images that users want. If a term
only appeared in the annotations for the images
in the relevant set, it’s called a relevant term. The
number of occurrences of a relevant term i in the
relevant set is called relevant term frequency,
denoted as f;. The number of co-occurrences of
two relevant terms i and j in the same image is
denoted by ¢;. The relevance of termiandj, S;, is
then updated as

S;; = S;;, + max(f, ) x (min(f, f;) - c; 5)

This formula for updating word association
through relevance feedback, or the WARF for-
mula, is executed after users provide feedback for
retrieval results that have more than one relevant
image. Note that the WARF formula implies that
if two terms appeared in the annotations for one
image, we can’t get any information out of it. For
example, a relevant image annotated as “car,
house, tree ...” provides us with little informa-
tion about how the concepts of car and tree relate
to each other. It's a valid argument that the term
co-occurrence sometimes provides us with useful
information because certain things tend to
appear together in one image, such as a beach
and an ocean; while others are rarely together,
such as an elephant and a polar bear. However,
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Figure 3. Concept similarity matrix with 30 words in the vocabulary, 5,000 images in the
database, and up to three keywords per image. Concept similarity matrix after (a) five,
(b) 20, and (c) 80 rounds of training. (d) The corresponding 2D views for the three cases.
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we believe that such co-occurrence information
is less important and consistent in the image
annotation domain than in the document
domain. In addition, this treatment can elimi-
nate false updates, especially when the number
of annotations per image is large relative to the
vocabulary size.

For the increment term in Equation 5, the
rationale for using multiplication instead of,
say, addition is that the two terms are more like-
ly to be relevant when they appear in an equal
number of relevance images (such as five images

for each term). Whereas, for the
case where one term appears in
nine images while the other term
appears only in one image, the
relationship between the two terms
is more likely to be coincidental.

Simulated experiments and
validation

Although we could perform a rig-
orous statistical analysis to validate
the WARF formula, it could be very
involved. Instead, we used a set of
simulated experiments to show the
WARF formula’s effectiveness. In our
user model we assumed that the
simulated user is interested in a class
of images that can be characterized
by k words. If a displayed image has
one of the k words in its annotation,
the user model will mark it as rele-
vant. We assumed that the database
contained 5,000 images and each
image was also annotated (random-
ly assigned by the machine) by up to
m words from a vocabulary of M
words. To imitate the relevance feed-
back process, the system randomly
selected 20 images. If it detected
more than one relevant image using
the user model, the system counted
it as a training session. Then it exe-
cuted the WARF formula to incre-
ment the concept similarity matrix.
The system performed multiple
training sessions to reach a statisti-
cally valid estimation of the matrix.

We first tested the cases for M =
30 and m = 3. Figure 3 shows the
concept similarity matrix in 3D and
2D views after different numbers of
training sessions. For this test, users
are interested in the concept “car” (row or col-
umn 3), “truck” (5), or “motorcycle” (11). The 3D
meshes or images depict matrices of weights
between all pairs of concepts. The element in the
matrix my; is the relevance measure between con-
cepts i and j. The peaks or bright dots indicate the
higher weights between concepts 3 and 5, 3 and
11, and 5 and 11. We assume the relevance mea-
sure is symmetric, so the system estimates only
half of the matrix, and it’s added to its transpose
to generate the symmetric matrices shown in
Figure 3. The weight to the node itself (the diag-
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Figure 4. Concept similarity matrix with 1,000 words in the vocabulary and 5,000 images in the database.
(a) Up to five keywords per image and 30 rounds of training, (b) up to five keywords per image and 100
rounds of training, and (c) up to 80 keywords per image and 30 rounds of training. The 2D views only show

the first 30 rows of the first 30 columns for clarity.

onal elements) isn’t updated for now. We can see
that the similarity between concepts 3, 5, and 11
begins to emerge after only five training sessions,
it clearly stands out within 20 sessions, and it sta-
bilizes within 80 sessions.

To test the scalability of the proposed formula
with respect to M and m, we further tested it using
a vocabulary of 1,000 words and up to 80 key-
words per image. Figure 4 shows the results. Noise

is evident (but not damaging) when m =5 and
only 30 rounds of training is performed.
Additional training sessions (100 rounds) appar-
ently increased the signal-to-noise ratio—if we
regard the ground truth word associations as the
signals. The increase of m to 80—that is, up to 80
words per image—clearly didn’t increase the pos-
sible confusion between the ground truth and
noise. It seems that the signal and the noise grow
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Figure 5. Concept similarity matrix
for three users, or one user with three
retrieval tasks (M = 30, m = 3).

Table 1. Hopfield activation results
with limited iterations. .,

Concept Active, Nodes

1 3511

2 351117

3 (car) 351117

4 3511

5 (truck) 351117

6 3511

7 351117

8 351117

9 3511
10 3511
11 (motorcycle) 351117
12 351117
13 3511
14 3511
15 (tiger) 3511.1517 26
16 3511
17 (van) 351117
18 3511
19 351117
20 3511
21 3511
22 35'1117
23 3511
24 351117
25 351117
26 (lion) 3511'1517 26
27 351117
28 3511
29 351117

30 3511

at a comparable rate (note the scale
on the vertical axis).

We also tested the case of multi-
ple users or complicated user behav-
iors. This time there’s a probability of
one in three that users will mark
“car” (3), “truck” (5), and “motorcy-
cle” (11) images as relevant whenev-
er they see them. There’s also a one
in three probability that users will
mark “car” (3) and “van” (17) as they
appear on the screen or that users are
searching for “tiger” (15) and “lion”
(26). Figure 5 shows the concept sim-
ilarity matrix after 80 rounds of feed-
back. The bright dots clearly reveal
the relevant concept pairs.

Semantic grouping of keywords

From the concept similarity
matrix, we can either implement a
Hopfield network or use a heuristic
clique detection algorithm to obtain
the semantic classes. We compare
the two methods using the simula-
tion result as the input data in
Figure 5.

To use the parallel activation
scheme of the Hopfield network, we
treat the 30 concepts as the nodes in
the network and assign the weights
m; shown in Figure 5 as the synap-
tic weights between nodes. During
the iteration, the output at node i at
timet+1is

1

s o

where
30

in, = Z omy,
£

s; (=0.3) is a bias, and s (= 0.1) con-
trols the Sigmoid function’s shape.
The convergence criterion is that
the L, distance between two adja-
cent output vectors is less than a
threshold (0.001 in our case).
Table 1 shows the results when
we activate the Hopfield net by
assigning 1 to each of the 30 nodes

and iterating four times for each activation.
Otherwise, if we iterate until convergence, the
results will be the same for all nodes: {35 11 15
17 26}. The reason is that we use symmetric
weighting, and the noisy estimation in the con-
cept similarity matrix can spread any activation
all over the network.

Table 1 shows that concepts 3, 5, 11, and 17
belong to one node class and 15 and 26 belong
to another. Notice that the Hopfield network is
suitable for a single-link classification system.
That is, within one class, each term is relevant to
at least one other term in the same class. In this
example, “van” (17) is only relevant to “car” (3)
but we classify “van” as a member of a bigger
class. The drawback is obvious. If a user is only
interested in “car” or “van,” the system has a
hard time isolating these two as separate classes
(as the retrieval processes show).

On the other hand, a heuristic clique detec-
tion algorithm can perform complete-link classi-
fication where each term is relevant to all other
terms in the same class. In fact, this is the defin-
ition of a clique in graph theory. This clique
detection algorithm results in three classes: {3, 5,
11}, {3, 17}, and {15, 26}. With complete-link clas-
sification, when users search for “Cherokee,” the
system will have the intelligence to either learn
from the context of the user actions whether the
interest is really in {Cherokee, Jeep, Sport Utility
Vehicle} or in {Cherokee, Indian}. At the very
least, the system can then point out possible con-
fusions and ask the user before returning many
irrelevant images.

An intelligent retrieval system

With low-level features, textual annotations,
and an automatically generated thesaurus, we
can build a hybrid intelligent image-retrieval sys-
tem to provide convenient retrieval for the user.
With hybrid image objects integrating both low-
level features and keyword annotations (Figure
1), the system can interact intelligently with the
user. Some features of an intelligent system
might include online learning of user preferences
or semantic grouping of keywords, intelligent
dialogue with users to understand the query and
guide the retrieval process, an online feature
selection (weighting) from relevance feedback,
and so forth (see Figure 6).

Implementation issues
It’s unreasonable to completely abandon the
use of a static thesaurus. The right choice will be a
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Figure 6. An intelligent retrieval system that can learn from the user interactions and understand the

semantics of words and contents.

hybrid strategy—we could start with a reasonably
good static thesaurus and add real-time learning
results to it on the fly. This static thesaurus can be
the result of any offline thesaurus construction
algorithms based on a set of documents or an
encyclopedia.

However, we need to normalize the concept
similarity matrix generated from the WARF for-
mula before we can use it to update the soft vec-
tors of the image annotations. In general, we
want the diagonal elements to be 1 and any off-
diagonal elements to be less than 1. We propose
the following normalization strategy: divide all
the off-diagonal elements by a factor D defined as

S max

Dzl—e'M’“ ™

where S js the maximal element of the matrix,
M is the size of the vocabulary or the number of
rows (or columns) of the matrix, and p>0is a
scaling factor. After the normalization of the off-
diagonal elements, the system sets all diagonal
elements to 1.

This normalizing strategy reflects the strategy
that when the vocabulary is small, the distance
between any two terms will be larger while for a
large vocabulary, the inclusion of synonyms is
more likely. For example, if we set p = 100 for
M = 30, the largest off-diagonal element will be
normalized to 0.26. For M = 1,000, the largest off-
diagonal element will be normalized to 0.99995,

which means that the most similar pair of words
out of 1,000 words is probably a synonym pair.

We can update the word similarity matrix
independently for different users to facilitate user
profiling and preference modeling. If we use one
matrix for one database, it can serve as a knowl-
edge discovery tool across users.

Example working scenarios

With the proposed framework, we expect our
system to be capable of dealing with the follow-
ing example scenarios:

O When a user searches for “Ford” and
“Toyota,” the system should automatically
infer that “car” is somewhat related to the
user’s interest. This is sometimes referred to as
automatic query expansion and it requires a
thesaurus or a knowledge base as the underly-
ing support. The system can learn this kind of
general knowledge either online or offline
using a static thesaurus.

O A user calls his cat “Socks” and annotates
some of its photos with “Socks.” The user
should be able to retrieve these photos when
searching for “cat” or “pets.” The system must
glean these kinds of domain- or user-specific
synonyms or knowledge from the user’s inter-
actions.

O When users search for images related to
“American Indians” using an image annotated
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with “Cherokee,” the system shouldn’t retrieve
an SUV. This is the case where polysemous
words cause confusion and degradation in
retrieval performance. Our word classification
algorithm can detect the two classes—namely,
“Cherokee” as in the “Cherokee Indian” and
“Cherokee” as in the “Grand Cherokee, the
SUV.” The system either can infer the correct
class by looking at contextual information or,
if this fails, ask users to clarify their intentions.

O Users can combine keywords and examples in
any combination intuitively, and the relevance
feedback module works in the joint keyword
and content space. The system can learn
whether the soft annotation vector is better at
capturing users’ query concepts or the targeted
images’ low-level features are more expressive.

Conclusions

Joint modeling of textual and visual informa-
tion can be effective or beneficial only when high-
level concepts and low-level visual features are
somewhat dependent. Fortunately, current re-
search in content analysis provides us with features
that can facilitate high-level understanding of
objects or semantics in many cases. However, a gap
still exists between the two. Future research shall
include the search for expressive low-level features,
the use of intermediate features, semantics-guided
segmentation and spatial relationship modeling,
and the use of machine learning techniques to
unify low-level features and keywords. MM
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