*

PERGAMON Information Systems 26 (2001) 563583

www.elsevier.com/locate/infosys

An XML-enabled data extraction toolkit for web sources

Ling Liu*, Calton Pu, Wei Han

College of Computing, Georgia Institute of Technology, Atlanta, GA 30332, USA

Abstract

The amount of useful semi-structured data on the web continues to grow at a stunning pace. Often interesting web
data are not in database systems but in HTML pages, XML pages, or text files. Data in these formats are not directly
usable by standard SQL-like query processing engines that support sophisticated querying and reporting beyond
keyword-based retrieval. Hence, the web users or applications need a smart way of extracting data from these web
sources. One of the popular approaches is to write wrappers around the sources, either manually or with software
assistance, to bring the web data within the reach of more sophisticated query tools and general mediator-based
information integration systems. In this paper, we describe the methodology and the software development of an XML-
enabled wrapper construction system—XWRAP for semi-automatic generation of wrapper programs. By XML-
enabled we mean that the metadata about information content that are implicit in the original web pages will be
extracted and encoded explicitly as XML tags in the wrapped documents. In addition, the query-based content filtering
process is performed against the XML documents. The XWRAP wrapper generation framework has three distinct
features. First, it explicitly separates tasks of building wrappers that are specific to a web source from the tasks that are
repetitive for any source, and uses a component library to provide basic building blocks for wrapper programs. Second,
it provides inductive learning algorithms that derive or discover wrapper patterns by reasoning about sample pages or
sample specifications. Third and most importantly, we introduce and develop a two-phase code generation framework.
The first phase utilizes an interactive interface facility to encode the source-specific metadata knowledge identified by
individual wrapper developers as declarative information extraction rules. The second phase combines the information
extraction rules generated at the first phase with the XWRAP component library to construct an executable wrapper
program for the given web source. © 2001 Elsevier Science Ltd. All rights reserved.

Keywords: Information extraction; Internet data management; Program generation; XML; Wrappers; World Wide Web

1. Introduction

The extraordinary growth of the Internet and
World Wide Web has been fueled by the ability it
gives content providers to easily and cheaply
publish and distribute electronic documents.
Companies create web sites to make available
their online catalogs, annual reports, marketing

*Corresponding author.
E-mail address: ling.lin@cc.gatech.edu (L. Liu).

brochures, product specifications. Government
agencies create web sites to publish new regula-
tions, tax forms, and service information. Inde-
pendent organizations create web sites to make
recent research results available. Individuals create
web sites dedicated to their professional interest
and hobbies. This brings good news and bad news.

The good news is that the bulk of useful and
valuable HTML-based web information is de-
signed and published for human browsing. This
has been so successful that many Net businesses

0306-4379/01/$ - see front matter © 2001 Elsevier Science Ltd. All rights reserved.

PII: S0306-4379(01)00040-0

564 L. Liu et al. | Information Systems 26 (2001) 563—583

rely on advertisement as their main source of
income, offering free email services, for example.
The bad news is that these “human-oriented”
HTML pages are difficult for programs to parse
and capture. Furthermore, the rapid evolution of
Web pages requires making corresponding
changes in the programs accessing them. In
addition, most of the web information sources
are created and maintained autonomously, and
each offers services independently. Interoperability
of the web information sources remains the next
big challenge.

A popular approach to address these problems
is to write wrappers to encapsulate the access to
sources. For instance, the most recent generation
of information mediator systems (e.g., Ariadne [1],
CQ [2,3], Internet Softbots [4], TSIMMIS [5,6]) all
include a pre-wrapped set of web sources to be
accessed via database-like queries. However, de-
veloping and maintaining wrappers by hand
turned out to be labor intensive and error-prone.

In this paper, we propose a systematic approach
to build an interactive system for semi-automatic
construction of wrappers for web information
sources, called XWRAP. The goal of our work can
be informally stated as the transformation of
“difficult” HTML input into “program-friendly”
XML output, which can be parsed and understood
by sophisticated query services, mediator-based
information systems, and agent-based systems. A
main technical challenge is to discover boundaries
of meaningful objects (such as regions and
semantic tokens) in a web document, to distin-
guish the information content from their metadata
description, and to recognize and encode the
metadata explicitly in the XML output. Our main
contribution here is to provide a set of interactive
mechanisms and heuristics for generating informa-
tion extraction rules with a few clicks, and a way
to combine those information extraction rules into
a method for generating an executable wrapper
program.

This is not the first time the problem of
information extraction from a web document has
been addressed. Atzeni and Mecca and Hammer
et al. [7,8] discover object boundaries manually.
They first examine the documents and find the
HTML tags that separate the objects of interest,

and then write a program to separate the object
regions. In [1,4,9-14], the authors separate object
regions with some degree of automation. Their
approaches rely primarily on the use of syntactic
knowledge, such as specific HTML tags, to
identify object boundaries.

Our approach differs from these proposals in
two distinct ways. First, we introduce a two-phase
code generation approach for wrapper generation.
The first phase utilizes an interactive interface
facility that communicates with the wrapper
developer and generates information extraction
rules by encoding the source-specific metadata
knowledge identified by the individual wrapper
developer. In contrast, most of the existing
approaches require the wrapper developers to
write information extraction rules by hand using
a domain-specific language. The second phase
utilizes the information extraction rules generated
at the first phase and the XWRAP component
library to construct an executable wrapper pro-
gram for the given web source. The two-phase
code generation approach presents a number of
advantages over existing approaches:

1. it provides a user-friendly interface program
to allow users to generate their information
extraction rules with a few clicks.

2. it provides a clean separation of the informa-
tion extraction semantics from the generation
of procedural wrapper programs (e.g., Java
code). Such separation allows new extraction
rules to be incorporated into a wrapper
program incrementally.

3. it facilitates the use of the micro-feedback
approach to revisit and tune the wrapper
programs at run time.

Second, we divide the task of identifying object
boundaries into two steps: region identification
and semantic token identification (see Section 4).
Once a web document is fetched, XWRAP build a
parse tree with HTML tags as internal nodes and
information content as leaf nodes. The structure of
the tree follows the nested structure of start- and
end-tags. Users may highlight a specific word or
phrase or sentence as the starting point of a
meaningful region. XWRAP will then apply the
heuristics on nearest region tags to derive the type

L. Liu et al. | Information Systems 26 (2001) 563—583 565

of the region. Then the heuristics for identifying
features of a specific region are applied. Similarly,
users may identify semantic tokens of interest with
a few clicks and fire learning algorithms to detect
repetitive token patterns within a region. Finally,
we provide a way to combine the region extraction
rules and semantic token extraction rules gener-
ated to determine the hierarchical structure of the
regions or semantic tokens of interest. We applied
the XWRAP approach to four different applica-
tion areas using web documents obtained from 10
different sites, which together contained thousands
of objects. The results were uniformly good,
gaining 100% accuracy in all sites examined
(see Section 5). Furthermore, we want to leverage
on standards as much as possible, thus choosing
XML as our output format. The development of
XWRAP presents not only a software tool but also
the methodology for developing an XML-enabled,
feedback-based, interactive wrapper construction
facility that generates value-added wrappers for
Internet information sources.

Before explaining the details of our approach,
we would like to note that semi-automated
wrapper construction is just one of the challenges
in building a scalable and reliable mediator-based
information integration system for web informa-
tion sources. The other important problems
include resolving semantic heterogeneity among
different information sources, efficient query plan-

ning for gathering and integrating the requested
information from different web sites, and intelli-
gent caching of retrieved data, to name a few. The
focus of this paper is solely on wrapper construc-
tion.

The rest of the paper proceeds as follows. We
overview the methodology for semi-automatic
wrapper construction in Section 2. We describe
the XWRAP technology for information extrac-
tion and for constructing wrappers for web
information sources in Section 3 and Section 4.
We demonstrate the effectiveness of our wrapper
construction techniques through an analysis of our
experimental results in Section 5. We conclude the
paper with a discussion on related work in Section
6 and a summary and an outline of future
directions in Section 7.

2. The design framework: an overview
2.1. Architecture

The architecture of XWRAP for data wrapping
consists of four components—syntactical struc-
ture normalization, information extraction, code
generation, program testing and packaging. Fig. 1
illustrates how the wrapper generation process
would work in the context of data wrapping
scenario.

Extraction Knowledge + Feedbacks

The Wrapper Generator System XWrap

Enter a URL s«"”;\‘,:f::;‘;‘} ii’;:‘[:‘:;”” ’ Information Extraction Exiraction rudes
g o] arse free
Cienerating s Y- Region Semantic Hierarchical l
Remolg Doc | Repairing | Generating Extraction | Loken Structure e
Fetch Rules | Syntax Errors | Parse Tree Extraction Extraction XWRAP
Testing Request | Remote document ferehing rules Region S-token H-structure Rulebuse
+ Feedbacks extraction | extraction | extraction
‘ Y ritles riies rules
Testing and Packaging Code Generation
| ol (Dara Wrapping)
Wrapper_ngmm Wrapper Program %m‘-‘&:g’mmn Generating Wrapper
Testing Release (sin By Example) Program Code

Source-specific Wrapper Program

Fig. 1. XWRAP system architecture for data wrapping.

566 L. Liu et al. | Information Systems 26 (2001) 563—583

Syntactical structure normalization is the first
component and also called syntactical normalizer,
which prepares and sets up the environment for
information extraction process by performing the
following three tasks. First, the syntactical nor-
malizer accepts an URL selected and entered by
the XWRAP user, issues an HTTP request to the
remote server identified by the given URL, and
fetches the corresponding web document (or so-
called page object). This page object is used as a
sample for XWRAP to interact with the user to
learn and derive the important information
extraction rules. Second, it cleans up bad HTML
tags and syntactical errors. Third, it transforms the
retrieved page object into a parse tree or the so-
called syntactic token tree.

Information extraction is the second component,
which is responsible for deriving extraction rules
that use declarative specification to describe how
to extract information content of interest from its
HTML formatting. XWRAP performs the infor-
mation extraction task in three steps—(1) identi-
fying interesting regions in the retrieved document,
(2) identifying the important semantic tokens and
their logical paths and node positions in the parse
tree, and (3) identifying the useful hierarchical
structures of the retrieved document. Each step
results in a set of extraction rules specified in
declarative languages.

Code generation is the third component, which
generates the wrapper program code through
applying the three sets of information extraction
rules produced in the second step. A key technique
in our implementation is the smart encoding of the
semantic knowledge represented in the form of
declarative extraction rules and XML-template
format (see Section 4.3). The code generator
interprets the XML-template rules by linking each
executable components with each type of rules. We
found that XML gives us great extensibility to add
more types of rules seamlessly. As a byproduct, the
code generator also produces the XML represen-
tation for the retrieved sample page object.

Testing and packing is the fourth component and
the final phase of the data wrapping process. The
toolkit user may enter a set of alternative URLs of
the same web source to debug the wrapper
program generated by running the XWRAP

automated testing module. For each URL entered
for testing purpose, the testing module will
automatically go through the syntactic structure
normalization and information extraction steps to
check if new extraction rules or updates to the
existing extraction rules are derived. In addition,
the test-monitoring window will pop up to allow
the user to browse the test report. Whenever an
update to any of the three sets of the extraction
rules occurs, the testing module will run the code
generation to generate the new version of the
wrapper program. Once the user is satisfied with
the test results, he or she may click the release
button (see Fig. 2) to obtain the release version of
the wrapper program, including assigning the
version release number, packaging the wrapper
program with application plug-ins and user
manual into a compressed tar file.

The XWRAP architecture for data wrapping is
motivated by the design decision fortaking ad-
vantage of declarative language for specification of
information extraction knowledge, for exploring
reusable functionality, and for separating data
wrapping from functional wrapping.

2.2. Phases and their interactions

The wrapper-generation process is so complex it
is not reasonable, either from a logical point of
view or from an implementation point of view, to
consider the construction process occurring in
one single step. For this reason, we partition
the wrapper construction process into a series
of subprocesses called phases, as shown in Fig. 3.
A phase is a logically cohesive operation that
takes as input one representation of the source
document and produces as output another repre-
sentation.

XWRAP goes through six phases to construct
and release a wrapper. Tasks within a phase run
concurrently using a synchronized queue; each
runs its own thread. For example, we decide to run
the task of fetching a remote document and the
task of repairing the bad formatting of the fetched
document using two concurrently synchronous
threads in a single pass of the source document.
The task of generating a syntactic-token parse tree
from an HTML document requires as input the

L. Liu et al. | Information Systems 26 (2001) 563—583 567

r¥wrap B[] B3 | 3§ Cunent Weathes Conditions - Savannch. Savannah Inlemational Aic._. [[u] B3
File XWrap Window | Fie Edt View Go Favoites Heb -
EnterURL | SourceNorma.. | STokenbxtrac | HStructExtract | e | aess [BT et e roms ovivestrerrcarmats o =]
Len | WPGeneraton | WhTest [|Liks 2]Bsstof theweb &]Channel Guide & JCustomee Links €] inteme! Evplore »
Elsaurce hitp: 1S 102, KSAVhtmI =
Tempiate | Browse | Expand ‘ Collopse ather Service
 Tahle Heul

ristic Description
Name |Currant_Wed ‘ save | analyze AllowSpace [felse =
| forward w| o [z backwad v |
forward ¥ o 1 backward ¥

Teble Direction verlical Lol Fosition | first -

ITR Colamn Tag Name E

Row Condition fran |5

Column Condition From |I

Row Tag Hame

Weather Source

Current Weather Conditions

Savannah, Savannah International Airport, GA,
United States
(KSAV) 32.07-08N 08112 08W 14M

| TAELE
@ = TR
& =D
@ v
@ w FONT
® = FONT

=

Conditions atIFeb 05.1998-0363 PMEST &

199902 05 2053 UTC

Wind frorm the SE (140 degrees) al 4 MPH [4 KT)
Visibility 10 mile(s)

=Condifinns_at=

<PHC-InserField-XG 'Condilions at* %=
=iConditions_ats

=Wiind =

<PHC-InseField-2G "Wind® 2
=Aind=

=Visinility=

<TRC-InsentFiald-XG Visibiliy' 7=
=S hility=

<Sky_conditions=

<TRE-InsentField-<G ' Sky condifions" 7=
<iSky_conditions=

=Tamperatura=

<TAC-InsentFleld-XG ‘Temperature® 7=

— — _— Sky clear
Cunm‘nun.j Wind | Vishility |Sky condi.| Temperat | Dew Paint| Relative _|Pressure | Preseure| ob conditions
Feh 05, 1... flamthe .. (10 mile(s) ciear BE0F(1.. 27.0F (-2.[22% 30.251n. . |0.07 inch... KSAV 0 Temperature 66.0F (159C)
hr— DewPoint27.0F (-25C)
Elmerary Structure Extract i e Relative 22%

Nomaiize | STokenbx. | Sae | Deseription Humicity

e PT———— Pressure 30.25in Hu (1024 hPa)

(altimeter)

ot e mpstetop o Pressure 0.07 inches (2.3 hPa) lover than three hours
=Curent_YWeather_Condition_Child= tendency ago

ob KSAV 0520537 14004KT 10SM CLR
19M03 A3025 RMK AQZ SLP244
T01831028 56023

Maximum and Minimum Temperatures

]

Maximum Minimum
Temperature Temperature
F(C) F(C)
g Intha & hatre nracading Feh nﬁhlﬂ
T (@ nlemet mne .

Fig. 2. A screenshot of the hierarchical structure extraction window.

entire document; thus, it cannot be done in the
same pass as the remote document fetching and
the syntax reparation. Similar analysis applies to
the other tasks such as code generation, testing,
and packaging.

The interaction and information exchange
between any two of the phases is performed
through communication with the bookkeeping
and the error handling routines. The bookkeeping
routine of the wrapper generator collects informa-
tion about all the data objects that appear in the
retrieved source document, keeps track of the
names used by the program, and records essential
information about each. For example, a wrapper
needs to know how many arguments a tag expects,
whether an eclement represents a string or an

integer. The data structure used to record this
information is called a symbol table.

The error handler is designed for the detection
and reporting errors in the fetched source docu-
ment. The error messages should allow the
wrapper developer to determine exactly where
the errors have occurred. Errors can be encoun-
tered at virtually all the phases of a wrapper.
Whenever a phase of the wrapper discovers an
error, it must report the error to the error handler,
which issues an appropriate diagnostic message.
Once the error has been noted, the wrapper must
modify the input to the phase detecting the error,
so that the latter can continue processing its input,
looking for subsequent errors. Good error hand-
ling is difficult because certain errors can mask

568 L. Liu et al. | Information Systems 26 (2001) 563—583

Enter a URL

v

Source Document

— Fetching and Repairing

= J Remate Doc.
l Repaired Source Doc. Ferch Rules

Generating Parse Tree

lj’_\wmc‘-mhn Parse Tree

Extraction
Rules

| Information Extraction

l Extraction Rules

Bookkeeping Routine

Code Generator

| XML-enabled Wrapper

LIPUDY 40417

l Wrapper Code

Code Testing

¢ Wrapper Code

Software Packaging

XWrap

v

Wrapper Program

Fig. 3. Data wrapping phases and their interactions.

subsequent errors. Other errors, if not properly
handled, can spawn an avalanche of spurious
errors. Techniques for error recovery are beyond
the scope of this paper.

In the subsequent sections, we focus our
discussion primarily on information extraction
component of the XWRAP, and provide a
walkthrough example to illustrate how the three
sets of information extraction rules are identified,
captured, and specified. As the syntactical struc-
ture normalization is a necessary preprocessing
step for information extraction, a brief description
of the syntactic normalizer is also presented.

3. Preprocessing: syntactical structure
normalization

The syntactical structure normalization process
is carried out in two phases, as shown in Fig. 3.
The first phase consists of two concurrently
synchronous tasks—remote document retrieval
and syntax reparation. The second phase is
responsible for generating a syntactic-token parse
tree of the repaired source document.

3.1. Fetching a web page

The remote document retrieval component is
responsible for generating a set of rules that
describe the list of interface functions and para-
meters as well as how they are used to fetch a
remote document from a given web source. The
list of interface functions includes the declaration
to the standard library routines for establishing the
network connection, issuing an HTTP request to
the remote web server through a HTTP Get or HTTP
Post method, and fetching the corresponding web
page. Other desirable functions include building
the correct URL to access the given service and
pass the correct parameters, and handling redirec-
tion, failures, or authorization if necessary.

For each wrapper, there is a set of retrieval
rules. Each rule specifies the name of the rule, the
list of parameters it takes, the built-in functions
GetURL or PostURL, the type of the URL protocols
like http, file, and ftp, the protocol-specific remote
fetch method (such as HTTP GET and HTTP POST),
and the corresponding URL. XWRAP will auto-
matically take care of packing the URL request
parameters in the correct way as required by the

L. Liu et al. | Information Systems 26 (2001) 563—583 569

HTTP GET and HTTP POST) protocol variants. In the
case of an PostURL request, the correct construc-
tion of the parameter object needs to be deduced
from the web form where the URL request
originates. The HTTP specification requires that
the POST parameters be submitted in the order they
appear in the form of the page.

Assume we want to construct a wrapper for
noaa current weather report web site, and the
URL entered at the start of XWRAP is http://
weather.noaa.gov/cgi-bin/currwx.pl?cccc=
KSAV, asking for the current weather in Savannah.
Fig. 4 shows a remote document retrieval rule
derived from the given URL. It uses the XWRAP
library function URLGet(...). The regular expres-
sion specified by Match (K[A-Z]{3}) specifies that
the location code is restricted to four capital
alphabet characters, starting with the character
“K”. When a web site offers more than one type of
search capability, more than one retrieval rules
may need to be generated.

3.2. Repairing bad syntax

As soon as the first block of the source
document is being fetched over, the syntax
repairing thread begins. It runs concurrently with
the remote document retrieval thread, and repairs
bad HTML syntax. This step inserts missing tags,
removes useless tags, such as a tag that either
starts with < Pr is an end tag that has no
corresponding start-tag. It also repairs end tags in
the wrong order or illegal nesting of elements. We
describe each type of HTML errors in a normal-
ization rule. The same set of normalization rules
can be applied to all HTML documents. Our
HTML syntax error reparation module can clean

up most of the errors listed in HTML TIDY
[15,16].

3.3. Generating a syntactic token tree

Once the HTML errors and bad formatting are
repaired, the clean HTML document is fed to a
source-language-compliant tree parser, which
parses the block character by character, carving
the source document into a sequence of atomic
units, called syntactic tokens. Each token identified
represents a sequence of characters that can be
treated as a single syntactic entity. The tree
structure generated in this step has each node
representing a syntactic token, and each tag node
such as TR represents a pair of HTML tags: a
beginning tag <TR> and an end tag </TR>.
Different languages may define which is called a
token differently. For HTML pages, the usual
tokens are paired HTML tags (e.g., <TR>,
</TR>), singular HTML tags (e.g.,
,
<P>), semantic token names, and semantic token
values.

Example 1. Consider the weather report page for
Savannah, GA at the national weather service site
(see Fig. 5), and a fragment of HTML document
for this paper in Fig. 6.

Fig. 7 shows a portion of the HTML tree
structure, corresponding to the above HTML
fragment, which is generated by running a
HTML-compliant tree parser on the Savannah
weather source page. In this portion of the HTML
tree, we have the following six types of tag nodes:
TABLE, TR, TD, B, H3, FONT, and a number of
semantic token nodes at leaf node level, such as
Maximum Temperature, Minimum Temperature,
84.9(27.8), 64.0(16.7), etc.

Remote Document Fetch Rules (XWRAP-weather.noaa.gov): :

GetURL(String location-code)

URL: http://weather.noaa.gov/cgi-bin/currux.pl?cccc=7location-code;
ParaPattern: location-code, match(K[A-Z]1{3});

{
Protocol: HTTP;
Method: GET;

}

Fig. 4. Example rules for fetching remote documents.

570 L. Liu et al. | Information Systems 26 (2001) 563—583

Important to note is that every syntactic token
parse tree is organized as follows. All non-leaf
nodes are tags and all leaf nodes are text strings,
each in between a pair of tags. XWRAP defines
a set of tree node manipulation functions for
each tree node object, including getNodeType
(node_id), getNodeName(node_ id), getNo-
deId(String NN), and getNodePath(node_id).
In order to obtain the node type—tag node or leaf
(value) node, the node name—tag name or text

% Curent Westhes Comdilions - 5 avannah. Savannah Intemmational Airport, GA, Unitsd States - Mets_ [FRE]ET |

Elo Eelt Yok Lanmmmsie ok

3 Y Pike SR M UEET (BT R m
el Pdgd - Here - Search | fude Fimi | Secedp 01 (&) % £ 1

T e T e A F-|

Mational Weather Service
Internet Weather Source

M. Current Weather Conditions
Current Savannah, Savannah International Airpert, GA, United
Gonditions States
- in the United G i
States (S AV 1207 BEH 22000 148
- worid wide
Conaitions at [~

Forocasts

Wind Caim
Watchos and bt *
Warnings Visibility 10 miles)

Sky conditions clea
Temperature 021
Dew Point 5
FAG Relative 56%
Humidity
Glossary Pressure 20in Hg [1015 fFa)
{altimeter)
ob K

Coded
Observations

* 14
TO1670144 10276

Maximum and Minimum Temperatures

Maximum Minimum
Temperature Temperature
F(C) F
In & 6 hours
3y -0 52PMES

'l [Ccelmen: Done [B SR RS SN

Fig. 5. An example weather report page at the nws.noaa.gov
site.

string, the node identifier for a given string, or the
path expression from the root to the given node.
We use dot notation convention to represent the
node path. A single-dot expression such as
nodeA.nodeB refers to the parent—child relation-
ship and a double-dot such as nodeA..nodeB refers
to the ancestor—descendent relationship between
nodeA and nodeB.

4. The methodology for information extraction

The main task of the information extraction
component is to explore and specify the structure
of the retrieved document (page object) in a
declarative extraction rule language. For an
HTML document, the information extraction
phase takes as input a parse tree generated by
the syntactical normalizer. It first interacts with
the user to identify the semantic tokens (a group of
syntactic tokens that logically belong together)
and the important hierarchical structure. Then it
annotates the tree nodes with semantic tokens in
comma-delimited format and nesting hierarchy in
context-free grammar. More concretely, the in-
formation extraction process involves three steps;
each step generates a set of extractions rules to be
used by the code generation phase to generate
wrapper program code.

Step 1. Identifying regions of interest on a page
This step is performed via an interactive interface,
which lets the XWRAP user guide the identifica-
tion of important regions in the source document,
including table regions, paragraph regions,

<TABLE><TR><TD COLSPAN=3><H3>Maximum and Minimum Temperatures
</H3> </TD></TR><TR><TD ALIGN=CENTER BGCOLOR="#FFFFFF"><FONT FACE=
"Arial,Helvetica">Maximum
Tenperature
F (C)</TD><TD ALIGN=CENTER BGCOLOR=
"#FFFFFF'">Minimum
Temperature
F(C)
</TD><TD></TD></TR><TR><TD ALIGN=CENTER>82.0(27.8)
</TD><TD ALIGN=CENTER>62.1(16.7)</TD><TD><FONT FACE=
"Arial, Helvetica">In the 6 hours preceding Oct 29, 1998 - 06:53 PM EST / 1998.10.29 2353
UTC</TD></TR><TR><TD ALIGN=CENTER>80.1(26.7)</TD>

<TD ALIGN=CENTER>45.0(7.2)</TD><TD><FONT FACE="Arial,
Helvetica">In the 24 hours preceding Oct 28, 1998 - 11:53 PM EST / 1998.10.28 0453 UTC
</TD></TR><TR><TD COLSPAN=3><HR SIZE=1 NOSHADE WIDTH='"100%"></TD></TR></TABLE>

Fig. 6. An HTML fragment of the weather report page at nws.noaa.gov site.

L. Liu et al. | Information Systems 26 (2001) 563—583 571

TABLE[2]

TR[O]
TD ™
H3 B
FONT FACE FONT
COLOR
FONT
Maximun an FACE
Minimum
O BROBR

Temperatures

Maximum Minimum

TD TD TD
i FONT FONT, FONT

FACE FACE FACE

empty
string .
82.0 62.1 In 5 preceding
27.8 16.7 th Oct 29
(s) € 1998-06:53
6 hours

Temperature F(C) Temperature F(C)

Fig. 7. A fragment of the HTML tree for the Savannah weather report page.

bullet-list regions, etc. The output of this step is
the set of region extraction rules that can identify
regions of interest from the parse tree.

Step 2: Identifying semantic tokens of interest on
a page. This step is carried out by an interactive
program, called semantic-token extractor, which
allows a wrapper developer to walk through the
tree structure generated by the syntactic normal-
izer, and highlight the semantic tokens of interest
in the source document page. The output of this
step is the set of semantic token extraction rules
that can locate and extract the semantic tokens of
interest, and a comma-delimited file containing all
the element type and element value pairs of
interest.

Step 3: Determining the nesting hierarchy for the
content presentation of a page. This step 1is
performed by the hierarchical structure extractor,
which infers and specifies the nesting structure of
the sections of a web page (document) being
wrapped. Such hierarchical specification will be
used for content-sensitive information extraction
from the source document(s). The outcome of this
step is the set of hierarchical structure extraction
rules specified in a context-free grammar, describ-
ing the syntactic structure of the source document
page.

Important to note is that, for structured data
sources such as database sources or XML docu-
ments, the information extraction process can be
conducted automatically, following the table
schema or the XML tags. However, this is not
the case for unstructured or semi-structured
information sources such as HTML documents

or text files, because semi-structured or unstruc-
tured data is provided with no self-describing
properties. Therefore, our goal is to perform
the information extraction with minimal user
interaction.

In summary, the semantic token extractor
analyzes the parse tree structure of the source
document and its formatting information, and
guesses the semantic tokens of interest on that
page based on a set of token-recognition heur-
istics. Similarly, the hierarchical structure extrac-
tor also uses the formatting information and the
source-specific structural rules to hypothesize the
nesting structure of the page. The heuristics used
for identifying important regions and semantic
tokens in a page and the algorithms used to
organize interesting regions of the source page into
a nested hierarchy are an important contribution
of this work. We describe them in more detail
below.

4.1. Region extraction. identifying important
regions

The region extractor begins by asking the user
to highlight the tree node that is the start tag of an
important element. Then the region extractor will
look for the corresponding end tag, identify and
highlight the entire region. In addition, the region
extractor computes the type and the number of
sub-regions and derives the set of region extraction
rules that capture and describe the structure layout
of the region. For each type of region, such as the
table region, the paragraph region, the text section

572 L. Liu et al. | Information Systems 26 (2001) 563—583

region, and the bullet list region, a special set of
extraction rules are used. For example, for regions
of the type TABLE, Fig. 8 shows the set of rules that
will be derived and finalized through interactions
with the user.

The rule Tree Path specifies how to find
the path of the table node. The rule Table Area
finds the number of rows and columns of the
table. The rule Effective Area defines the
effective area of the table. An effective area is
the sub-region in which the interesting rows
and columns reside. By differentiating the
effective area from a table region, it allows us,
for example, to remove those rows that are
designed solely for spacing purpose. The fourth
rule Table Style is designed for distinguishing
vertical tables where the first column stands
for a list of attribute names from horizontal
tables where the first row stands for a list of
attribute names. The last rule getTableInfo
describes how to find the table name by
giving the path and the node position in the
parse tree.

Region Extraction Rules(String sourcemname)::
Tree Path(String node_id, String node_path){

setTableNode = node_id;
nodepath = getNodePath(node_id); }

Example 2. Consider the weather report page for
Savannah, GA at the national weather service site
(see Fig. 5), and a fragment of HTML parse tree
(as shown in Fig. 7). This example page uses five
tables to report the weather conditions in Savan-
nah. The HTML fragment shown in Fig. 7 is the
third table. By the W3C’s document object model
(DOM) convention, we denote it as TABLE[2]. To
identify and locate the region of the table node
TABLE[2], we apply the region extraction rules
given in Fig. 8 and obtain the following source-
specific region extraction rules for extracting the
region of the table node TABLE[2].

1. By applying the first region extraction rule,
XWRAP can identify the tree path for
TABLE[2] to be
HTML.BODY.TABLE[0] .TR[0] .TD[4] . TABLE[2].

2. To identify the table region, we first need the
user to identify the row tag TR and the column
tag TD of the given region of the TABLE[2]
node. Based on the row tag and column tag,
the region extractor may apply the second

Table Area(String node_id, String TN, String CN, Integer rowMax, Integer colMax){

setRouTag(node_id) = 7TN;
setColTag(node_id) = 7CN;

rowMax = getNumOfRows (node_id) ;
colMax = getNumOfCols(node_id); }

Effective Area(String node_id, String rowSI, String rowEI, String colSI, String colEI){

setRowStartIndex(node_id) = 7rowSI;
setRowEndIndex(node_id) = 7rowEI;
setColStartIndex(node_id) = 7colSI;
setColEndIndex (node_id) = 7colEI;
getEffectiveArea(node_id); }

Table Style(String node_id){

if (ElementType(child(child(node_id, 1), 1)) = ‘Attribute’
if ElementType(child(child(node_id, 1), 2)) = ‘Attribute’)
setVertical(node_id) = 1, setHorizontal(node_id) = 0;

else

setHorizontal (node_id) = 1, setVertical(node.id) = 0; }

getTableInfo(String node_id, String TNN, String TN, String TP){

setTableNameNode (node_id) = TNN;
TN = getTableName (TNN);
TP = getNodePath(TNN); }

non

Fig. 8. Extraction rules for a table region in an HTML page.

L. Liu et al. | Information Systems 26 (2001) 563—583 573

extraction to deduce that the table region of
TABLE[2] consists of maximum five rows and
maximum three columns.

3. The extraction rule Effective Area will be
used to determine the effective area of the
table node TABLE[2]. It requires the user’s
input on the row start index rowSI = 2, the row
end index rowEI =4, the column start index
c0l8I =1 and the column end index colEI =3.
With these index information, the region
extractor can easily identify the effective table
region, the area that does not include the row
for table name and the empty row.

4. By applying the rule Table_Style, we can
deduce that this table is a horizontal table,
with the first row as the table schema.

5. To determine how to extract the table name

node, we need the user to highlight the table
name node in the parse tree window (recall
Fig. 2). Based on the user’s input, XWRAP
can infer the path expression for the table
name node is
TABLE[2] .TR[0] .TD[0O] .H3[0] .FONT[O] .-
FONT[0].
Then by applying the fifth region extraction
rule getTableInfo, we can extract the table
name. Note that the function getTableN-
ame (node_id) calls the following semantic
token extraction rule to obtain the actual
string of the table name (see Section 4.2 for
details on semantic token extraction)..

<ST_extract> ST_extract(String TN)
<rule_exp>
extract TN=TABLE[2].TR[0].TD[0].getChildNode (1) .getStoken()
where TABLE[2].TR[0].TD[0].getChildNode (1) .getNodeType() = ‘tag’
and TABLE[2].TR[0].TD[0].getChildNode (1) .getNodeName() = ‘H3’;
</rule_exp>
</ST_extract>
The path of this table name node can be
computed directly by invoking
getNodePath(getNodeId (‘TABLE[2]°)),
which returns
HTML.BODY.table[0] .TR[0O] .TD[4] .TABLE[2].

TR[0].TD[0] .H3[0] .FONT[0] .FONT [O].

It is important to note that the design of our
region extraction rules is robust in the sense that
the extraction rules are carefully designed to

compute the important information (such as the
number of tables in a page, the number of
attributes in a table, etc.) at runtime. For example,
let us assume that the nws.noaa.gov wrapper was
constructed using the example page from a Port-
land weather report at a specific time, which
happens to contain only three tables instead of the
normal layout of four tables. The first table
contains only seven rows instead of the normal
layout of nine rows. When the very same wrapper
runs to extract the page of Savannah, GA, our
wrapper will automatically deduce that the page
has four tables and the first table has nine rows,
rather than assuming all the weather report at
nws.noaa.gov obey the same format. Furthermore,
our region extraction rules are defined in a
declarative language and therefore independent
of the implementation of the wrapper code. This
higher level of abstraction allows the XWRAP
wrappers to enjoy better extensibility and ease in
maintenance and in adapting to changes at the
source.

4.2. Semantic token extraction: finding important
semantic tokens

In general each semantic token is a sub-string of
the source document that is to be treated as a
single logical unit. There are two kinds of token:
specific strings such as HTML tags (e.g., TABLE,
FONT), and semantic tokens such as those strings in
between a pair of HTML tags. To handle both
cases, we shall treat a token as a pair consisting of
two parts: a token name and a token value. For a
tag token such as FONT, the tag name is FONT and
the tag value is the string between a beginning tag
 and its closing tag . A
semantic token such as Maximum and Minimum
Temperature F(C) or Current Weather Condi-
tions in between the start and end tags of the
tag token FONT will be treated as either a
name token or a value token, depending on the
context or the user’s choice. Similar treatment
applies to the token such as Savannah, Savannah
International Airport, GA, United States. In
addition, a help function—getStoken(node_id)
is provided for semantic token extraction rules. It
extracts and concatenates all text strings from the

574 L. Liu et al. | Information Systems 26 (2001) 563—583

leaf nodes of the subtree identified by the given
node_id.

The main task of a semantic token extractor
(S-token extractor for short) is to find semantic
tokens of interest, define extraction rules to
locate such tokens, and specify such tokens
in a comma-delimited format!, which will be
used as input in the code generation phase.
The first line of a comma-delimited file contains
the name of the fields that denote the data. A
special delimiter should separate both field names
and the actual data fields. The XWRAP system
supports a variety of delimiters such as a comma
(,), a semicolon (;), or a pipe (|). To identify
important semantic tokens, the S-token extractor
examines successive tree nodes in the source page,
starting from the first leaf node not yet grouped
into a token. The S-token extractor may also be
required to search many nodes beyond the next
token in order to determine what the next token
actually is.

Example 3. Consider a fragment of the parse
tree for the Savannah weather report page
shown in Fig. 7. From the region extraction step,
we know that the leaf node name Maximum
and Minimum Temperatures of the left most
branch TR[0] is the heading of a table region
denoted by the node TABLE[2]. Also based on
the interaction with the user, we know that the
leaf nodes of the subtree anchored at TA-
BLE[2] .TR[1].TD[0] should be treated as a
semantic token with the concatenation of all three
leaf node names, i.e., the string Maximum
Temperature F(C), as the token name; and the
leaf nodes of the tree branch TA-
BLE[2] .TR[2].TD[0], 1i.., the string 82.9
(27.8), is the value of the corresponding semantic
token. Thus a set of semantic token extraction
rules can be derived for the rest of the subtrees
anchored at TR[3] and TR[4], utilizing the
function getStoken().

'A comma-delimited format is also called delimited text
format. It is the lowest common denominator for data
interchange between different classes of software and applica-
tions.

<ST_extract>
ST extract (String ST name[], String STvall [1)
< !Start of the repetition >
<7 XG-Iteration-XG ¢ ‘Start’’?>
<loop> integer row.i =3, 4
<loop> integer col j =0, 1, 2
<rule_exp>
extract ST.val[row.i,col_jl1=TABLE[2].TR[row.i].TD[col_j].get
Stoken()
where TABLE[2].TR[1].TD[col j].getStoken()=ST name[col jI;
</rule_exp>
</loop>
</loop>
</ST.extract>

By traversing the entire tree of the node TABLE [2]
and applying the derived extraction rules, we may
extract all the token values for each given token
name in this region. Similarly, by traversing the
entire tree of Savannah page, the semantic-token
extractor produces as output a comma-delimited
file for the Savannah weather report page. Fig. 9
shows the portion of this comma-delimited file
that is related to TABLE[2] node. The first line
shows the name of the fields (the rows) that are
being used. The second and third lines are two
data records.

4.3. Hierarchical structure extractor: obtaining the
nesting hierarchy of the page

The goal of the hierarchical structure extractor
is to make explicit the meaningful hierarchical
structure of the original document by identifying
which parts of the regions or token streams should
be grouped together. More concretely, this step
determines the nesting hierarchy (syntactic struc-
ture) of the source page, namely what kind of
hierarchical structure the source page has, what
are the top-level sections (tables) that forms the
page, what are the sub-sections (or columns, rows)
of a given section (or table), etc.

Maximum Temperature F(C); Minimum Temperature F(C); <TD></TD>
82.0(27.8);62.1(16.7);In the 6 hours preceding Oct 29,
1998 - 6:53 PM EST / 1998.10.29 2353 UTC
80.1(26.7);45.0(7.2);In the 24 hours preceding Oct 28,
1998 - 11:53 PM EST / 1998.10.28 0453 UTC

Fig.9. A fragment of the comma-delimited file for the
Savannah weather report page.

L. Liu et al. | Information Systems 26 (2001) 563—583 575

Similar to the semantic token extractor, the
hierarchical structure can be extracted in a semi-
automatic fashion for a larger number of pages.
By semi-automatic we mean that the task of
identifying all sections and their nesting hierarchy
is accomplished through minimal interaction with
the user. The following simple heuristics are most
frequently used by the hierarchy extractor to make
the first guess of the sections and the nesting
hierarchy of sections in the source document to
establish the starting point for feedback-driven
interaction with the user. These heuristics are
based on the observation that the font size of the
heading of a sub-section is generally smaller than
that of its parent section.

® [dentifying all regions that are siblings in the
parse tree, and organizing them in the sequen-
tial order as they appear in the original
document.

® (Obtaining a section heading or a table name
using the paired header tags such as <H3>,
</H3>.

® Inferring the nesting hierarchy of sections or the
columns of tables using font size and the nesting
structure of the presentation layout tags, such
as <TR>, <TD>, <P>, <DL> <DD>, and
so on.

We develop a hierarchical structure extraction
algorithm that, given a page with all sections and
headings identified, outputs a hierarchical struc-
ture extraction rule script expressed in an XML-
compliant template for the page. Fig. 10 shows the
fragment of the XML template file corresponding
to the part of a NWS weather report page shown
in Fig. 7. It defines the nesting hierarchy, anno-
tated with some processing instructions.

The use of XML templates to specify the
hierarchical structure extraction rule facilitates
the code generation of the XWRAP for several
reasons. First, XML templates are well-formed
XML files that contain processing instructions.
Such instructions are used to direct the template
engine to the special placeholders where data fields
should be inserted into the template. For instance,
the processing instruction XG-InsertField-XG
has the canonical form of XG-InsertField-XG
is <7XG-InsertField-XG “FieldName”?>. It

<Maximum_and Minumum Temperatures>

<Description>Maximum and Minimum Temperatures</Description>

<!-- Start of the repetition -->

<7XG-Iteration-XG ‘‘Start"?>

<Maximum and Minimum Temperatures Child>

<Maximum_Temperature>
<Description>MaximumTemperature F(C)</Description>
<Value><?XG-InsertField-XG ‘‘Maximum Temperature'></Value>
</Maximum Temperature>

<Minimum_Temperature>

<Description>MinimumTemperature F(C)</Description>
<Value><?XG-InsertField-XG ‘‘Minimum Temperature'></Value>
</Minimum Temperature>

<TD>
<Description></Description>
<Value><?XG-InsertField-XG °‘TD"></Value>
</TD
</Maximum_and Minumum Temperatures Child>
<?XG-TIteration-XG ¢ ‘End"7?>
<!-- End of the repetition -->
</Maximum_and Minumum Temperatures>

Fig. 10. A fragment of the hierarchical structure extraction rule
for nws.noaa.gov current weather report page.

looks for a field with a specified name “Field-
Name” in the comma-delimited file and inserts
that data at the point of the processing instruction.
Second, an XML template also contains a
repetitive part, called XG-Iteration-XG, which is
necessary for describing the nesting structure of
regions and sections of a web page. The XG-
Iteration-XG processing instruction determines
the beginning and the end of a repetitive part. A
repetition can be seen as a loop in classical
programming languages. After the template engine
reaches the “End” position in a repetition, it takes
a new record from the delimited file and goes back
to the ““Start” position to create the same set of
XML tags as in the previous pass. New data is
inserted into the resulting XML file.

Due to the fact that the heuristics used
for identifying sections and headings may have
exceptions for some information sources, it is
possible for the system to make mistakes when
trying to identify the hierarchical structure of a
new page. For example, based on the heuristic on
font size, the system may identify some words
or phrases as headings when they are not, or
fail to identify phrases that are headings, but
do not conform to any of the pre-defined regular
expressions. We have provided a facility for the

576 L. Liu et al. | Information Systems 26 (2001) 563—583

user to interactively correct the system’s guesses.
Through a graphical interface the user can high-
light tokens that the system misses, or delete
tokens that the system chooses erroneously.
Similarly, the user can correct errors in the system
generated grammar that describes the structure of
the page.

The XWRAP code generator generates the
wrapper code for a chosen web source by applying
the comma-delimited file (as shown in Fig. 9 for
the running example), the region extraction rules
(as given in Example 2), and the hierarchical
structure extraction rules (see Fig. 10), all de-
scribed using the XWRAP’s XML template-based
extraction specification language. Due to the space
limitation, the details on the language is omitted
here.

Finally, to satisfy the curiosity of some
readers, we show in the appendix a fragment of
the XML document transformed from the original
HTML page by the XWRAP_nws.noaa.gov wrap-
per program, which was generated semi-automa-
tically using XWRAP toolkit for the NWS web
source.

5. Experimental results
5.1. Representative web sites

Due to the rapid evolution of the web, there are
few agreed upon standards with respect to the
evaluation of web pages. Existing standard bench-
marks such as the SPECweb96, Webstone 2.X,
and TPC-W impose a standard workload to
measure server performance. Although it is an
interesting challenge to collect a representative set
of web sites for comparing the performance of web
data source wrappers, that task is beyond the
scope of this paper. For our analysis, we have
chosen four web sites that are representative in our
opinion.

1. NOAA weather site shown in Fig.2 and
Fig. 5. NOAA pages combine multiple small
tables (vertical or horizontal) with some
running text. Number of random samples
collected: 10 different pages.

2. Buy.com, a commercial web site [www2.buy.-
com| with many advertisements and long
tables. This is a web site with frequent updates
of content and changes of format. It is an
example of challenging sites for wrapper
generators. Web pages used in our evaluation
are generated dynamically by a search
engine. Pages used include book titles that
contain keywords such as “JDBC” and
“college life”. Number of random samples:
20 pages.

3. Stockmaster.com, another commercial site
[www.stockmaster.com] with advertisements,
graphs, and tables. This is an example of
sites with extremely high frequency updates.
Pages used in our evaluation are also
generated dynamically, including stock infor-
mation on companies such as IBM and
Microsoft. Number of random samples: 21
pages.

4. CIA Fact Book (http://www.odci.gov/cia/
publications/factbook), a well-known web site
used in several papers [11,12]. Although
infrequently updated, it is included here for
comparison purposes. Number of random
samples: 267 pages.

5.2. Evaluation of wrapper generation

The first part of experimental evaluation of
XWRAP concerns the wrapper generation pro-
cess. Since the use of wrapper generator depends
on many factors outside of our control, we avoid
making any scientific claims of this evaluation
result. The experiments are included so readers
may gain an intuitive feeling of the wrapper
generator usage.

We measured the approximate time it takes for
an expert wrapper programmer (in this case a
graduate student) to generate wrappers for the
above four web sites. Since production-use wrap-
pers are typically written and maintained by
experienced professional programmers, this is a
common case. The results are shown in Fig. 11.
We already have several improvements on the
GUI that should shorten the wrapper generation
process.

L. Liu et al. | Information Systems 26 (2001) 563—583 577

Our initial experience tells us that the main
bottleneck in the wrapper generation process is the
number of iterations needed to achieve a signifi-
cant coverage of the web site. The main advantage
of our wrapper is the level of robustness. The
wrappers generated by XWRAP can handle pages
that have slightly different structure (such as extra
or missing fields (bullets or sections) in a table
(a text section)) than the example pages used for
generating the wrapper. However, when the pages
are significantly different from the example pages
used in the wrapper generation process, the
wrapper will have to be refined.

Our experience also tells us that the higher
quality of the sample pages used for generating
wrappers, the higher accuracy one would get.
Since an XWRAP wrapper is generated ‘“‘by
example”, the choice of a simplistic example page
would produce too simple a wrapper for more
complex pages. Typically, as more complex pages
are encountered, the wrapper is refined to handle
the new situation. Ideally, one would find the most
complex example web page of the site, and use it to
generate the “‘nearly complete” wrapper for that
site. Developing mechanisms for selecting high-
quality sample Web pages is a topic of our ongoing
research.

5.3. Evaluation of wrapper execution

Our current implementation has been built for
extensibility and ease of software maintenance.
Consequently, we have chosen software compo-
nents with high functionality and postponed the
optimization of data structures and algorithms to
a later stage. One example of such trade-off is the
use of Java Swing Class library to manage all
important data structures such as the document

tree. This choice minimizes the work for visualiza-
tion of these data structures, which is more
important than raw performance at this stage of
XWRAP development.

All measurements were carried out on a
dedicated 200 MHz Pentium machine (jambi.cse.o-
gi.edu). The machine runs Windows NT 4.0 Server
and there is only one user in the system. All the
XWRAP software is written in Java. The main
Java package used is Swing.

Fig. 12 shows the first characterization of web
page samples. We see that NOAA and Stock-
master.com have high uniformity (low standard
deviation) in document size, due to their form-
oriented page content (standard weather reports
and standard stock price reports). The CIA Fact
Book has medium standard deviation in document
size, since the interesting facts vary somewhat
from place to place. The Buy.com pages have high
variance in document size, since the number of
books available for each seclection topic varies
greatly.

Also from Fig. 12 we see that the wrapper-
generated document tree length is proportional
to the input document size. However, this may
not be true for the result XML file size. We
call wrappers that ignore a significant portion
of the source pages (in this case, the advertise-
ments in Buy.com and Stockmaster.com) low
selectivity wrappers. In our case, Buy.com and
Stockmaster.com are low selectivity due to
heavy advertisement, and their Input-Doc-Size/
Output-XML-Size ratio is high (9.6 and 57.3,
respectively). Purely informational sites such as
NOAA and CIA Fact Book tend to have high
selectivity (4.1 and 0.9, respectively).

An expected, but important observation is
about consistent performance of the wrappers, in

Data Generation Revision | Extraction Rules XML Template Accuracy
Source Time (minutes) (times) Length(1lines) Length(lines) | Verification
NOAA 40 2 114 153 100%

CIA Factbook | 25 1 237 23 100%
Buy.com 16 0 102 46 100%
Stockmaster 23 1 90 46 100%

Fig. 11. XWRAP performance results.

578 L. Liu et al. | Information Systems 26 (2001) 563—583

Data Avg. vs. | Document Document Result XML | Doc/XML
Source St. Dev. | Size(byte) | Tree Length | Size(byte)
NOAA Average 31135 1145 7593 4.1
St. Dev. | 465 23 42 0.1
CIA Factbook | Average 16115 834 18981 0.9
St. Dev. | 4503 188 5623 0.1
Buy . com Average 44075 832 5172 9.6
St. Dev. | 11871 232 2014 3.4
Stockmaster Average 21218 523 370 57.3
St. Dev. | 1137 32 11 2.4

Fig. 12. Performance statistics w.r.t. source document size and result XML size.

Data Avg. vs. | Fetch Expand Tree | Extraction | Generate Total Correlation
Source St. Dev. | Time(ms) | Times (ms) Times (ms) Times (ms) | Time(ms) | Doc/Time
NOAA Average 4391 8631 3841 1128 18520 0.45

St. Dev. | 1032 1055 228 116 1636
CIA Factbook | Average 1907 11916 4709 3902 23043 0.93

St. Dev. | 265 3366 1175 1297 776
Buy.com Average 6908 77T 2748 838 18909 0.66

St. Dev. | 4333 1563 1439 287 6602
Stockmaster Average 1972 5439 1412 468 9973 0.35

St. Dev. | 489 453 497 121 1131

Fig. 13. Performance of wrappers w.r.t. Fetch,

terms of successfully capturing the information
from source pages. First, form-oriented input
pages such as NOAA and Stockmaster.com have
high uniformity (low standard deviation) in the
result XML file size. Second, for variable-sized
pages in Buy.com and CIA Fact Book, we
calculated the correlation between the input
document size and the output XML file size (from
the data table not shown in the paper due to space
constraints). The correlation is strong: 1.00 for
Buy.com and 0.98 for CIA Fact Book. This shows
consistent performance of wrappers in mapping
input to output.

Fig. 13 shows the summary of execution
(elapsed) time of wrappers. It is comforting
that form-oriented pages (NOAA and
Stockmaster.com) take roughly the same time
(standard deviation at about 10% of total elapsed
time) to process. This is the case for both a high
selectivity site such as NOAA and a low selectivity
site such as Stockmaster.com. For variable-sized
pages in Buy.com and CIA Fact Book, we

Expand, Extract, and Result Generate time.

calculated the correlation between the input
document size and total elapsed processing time:
0.66 for Buy.com and 0.93 for CIA Fact Book.
The higher correlation of CIA Fact Book is
attributed to its high selectivity (same input and
output size), and lower correlation of Buy.com to
its lower selectivity (input almost 10 times the
output size). This shows the consistent perfor-
mance of wrappers in elapsed time.

Fig. 13 also shows that most of the execution
time (more than 90%) is spent in four components
of the wrapper: Fetch, Expand, Extract, and
Generate. The first component, Fetch, includes
the network access to bring the raw data and
the initial parsing. Since we have no control
over the network access time, the fetch time has
high variance. This is confirmed by the lowest
variance of the smallest documents (CIA Fact
Book) and highest variance of largest documents
(Buy.com).

The second component, Expand, consumes the
largest portion of execution time. It is a utility

L. Liu et al. | Information Systems 26 (2001) 563—583 579

routine that invokes Swing to expand a tree
data structure for extraction. This appears to be
the current bottleneck due to the visualization
oriented implementation of Swing, and it is a
candidate for optimization.

The third component, Extract, also uses the
Swing data structure to do the Information
Extraction phase (Section 4). This phase does
more useful work than Expand, but it is also a
candidate for performance tuning when we start
the optimization of the Expand component.

The fourth component, Generate, produces the
output XML file. It is clearly correlated to the size
of the output XML file. Except for the extremely
short results from Stockmaster.com (consistently
at about 370 bytes), the execution time of Generate
for the other three sources is between 5 and 6 bytes
of XML generated per 1 ms.

6. Related work

Recently considerable attention has been
received on generating wrappers for web
information sources and providing database like
queries over semi-structured data through wrap-
pers. We summarize below some of the popular
projects and compare them with our XWRAP
system.

TSIMMIS [6] developed a logical template-
based approach to generating wrappers for
web sources and other types of legacy systems.
This approach provides a way of rapidly con-
structing wrappers by example but it could require
a large number of examples to specify a single
source.

The Internet robot project at University of
Washington [12] developed an Internet compar-
ison shopping agent that can automatically build
wrappers for web sites. Since the proposed
approach focuses more on pages that contain
items for sale, much stronger assumptions are
made about the type of information to be used to
guess the underlying structure. As a result, their
wrapper language is not very expressive, and the
system is quite limited in terms of the types of
pages for which it can generate wrappers.

Another endeavor on wrapper construction
at University of Washington is made by
Kushmerick et al. [4,14] using inductive learning
techniques. The proposed approach builds a
program that extracts information from a
web page based on a set of pre-defined extractors.
The advantage of this approach is that the
resulting wrappers will be more robust to
inconsistencies across multiple-document pages.
However, their approach could not be used to
generate wrappers for more complex pages such as
the NWS weather report pages, without first
building extractors for each of the fields of those
pages.

The wrapper construction effort in the AR-
IADNE project [1,11] has also demonstrated
the importance and feasibility of building a
wrapper generator. The focus of their work is
very similar to ours, i.e., semi-automatic genera-
tion of wrappers for the web sources to be
integrated by a mediator or a software agent.
However, they follow a very different approach
that uses LEX to find tokens of interest from a
source page and uses YACC to define and extract
the nesting structure of the page. However, the
current version of the ARIADNE system does not
handle the web pages that contain tables such as
the NWS weather report site. Also it does not
provide feedback-based learning capability to
enhance the robustness of generated wrappers in
handling inconsistencies across multiple-instance
pages.

A recent project W4F [11] at University of
Pennsylvania produces a toolkit to help wrapper
developers to develop wrappers. The main feature
of W4F includes the use of the DOM object model
instead of the grammar-based approach as in
JEDI [17] and the use of the Nested String
Language (NSL) to encode the information
extraction rules.

Despite the commonality with other approaches
such as encoding extraction rules in description
files and using heuristics based on particular
HTML tags, our wrapper generation approach
differs markedly from the existing approaches. The
most distinct feature is its unique two-phase code
generation framework. The two-phase code gen-
eration approach presents a number of advantages

580 L. Liu et al. | Information Systems 26 (2001) 563—583

over existing approaches. First, it provides a user-
friendly interface program to allow users to
generate their information extraction rules with a
few clicks. Second, it provides a clean separation
of the information extraction semantics from the
generation of procedural wrapper programs
(e.g., Java code). Such separation allows new
extraction rules to be incorporated into a wrapper
program incrementally. Third, it facilitates the use
of the micro-feedback approach to revisit and tune
the wrapper programs at run time. In addition,
XWRAP explicitly separates tasks of building
wrappers that are specific to a web source from
the tasks that are repetitive for any source, and
uses a component library to provide basic building
blocks for wrapper programs.

In addition, a variety of research has been
devoted to issues in directly querying semi-
structured data from web sources in a database-
like fashion [7,18-21]. These efforts are concerned
with issues such as the development of data models
and query languages for semi-structured data,
defining formal semantics for such query lan-
guages, and efficiently implementing these lan-
guages.

Other interesting work includes WebL [22]
and WIDL [23], offering some advanced features
for the web document retrieval, and W4F [10],
offering an interesting web wrapper factory to
extract information using nested string lists as
the target structure. In addition, Web-OQL
[24] and XML-QL [25] provide queries with
variable binding, and offer interesting techniques
for implementing functional wrappers on top
of the XWRAP data wrapper. Other interesting
effort in using declarative approaches to
information extraction includes QEL [26] and
XML-Pointer [27], although their current devel-
opments are limited to simple constructs of the
web pages.

There are some commercial wrapping services
available on the Internet, such as Junglee (bought
by Amazon.com), Jango (bought by Excite), and
mySimon. They are able to extract information
from large HTML sources. However, their tech-
nology is considered a business asset and proprie-
tary, consequently unavailable to the world at
large.

7. Conclusion

We have presented our approach for semi-
automatically generating wrappers for web infor-
mation sources. There are three main contribu-
tions of the paper. First, we develop a two-phase
code generation methodology and a set of
mechanisms for semi-automatic construction of
XML-enabled wrappers. Second, we explicitly
separate tasks of building wrappers that are
specific to a web source from the tasks that
are repetitive for any source, and provide
a component library to host basic building
blocks of wrapper programs. Third, XWRAP
provides inductive learning algorithms that
derive or discover wrapper patterns by reasoning
about sample pages or sample specifications.
The ideas and results of the XWRAP system
appear to be effective for many semi-structured
web sources. However, we need more advanced
wrappers to be able to broaden the scope
of sources we can generate wrappers for.
Currently, we are working on enhancing the
generation of data wrappers with the capability
of handling complex tables that have more
than two dimensions and finer grained
queries that have complex search conditions.
We are also interested in mechanisms for
enhancing the reliability of the wrappers
generated.

Through our experience with XWRAP [28],
we found that for those web sites whose presenta-
tion layout and structure change frequently,
the wrappers generated by using XWRAP
may need to be revised using XWRAP from
time to time. More interestingly, certain types of
web pages require less human involvement
during the data extract than others and thus
more robust in the presence of web site changes.
This motivates us to develop a fully automated
approach to data extraction [29]. By using the
fully automated approach, we developed a
companion wrapper generation system—XWRAP
Elite (http://www.cc.gatech.edu/projects/disl/
XWRAPElite/). Comparing with XWRAP original
reported in this paper, the coverage of our fully
automated approach is less than the coverage
of XWRAP original, but the wrappers generated by

L. Liu et al. | Information Systems 26 (2001) 563—583 581

<Maximum_and Minumum Temperatures>

<Description>Maximum and Minimum Temperatures</Description>

<Maximum.and Minimum Temperatures.Child>
<Maximum_Temperature>

<Description>MaximumTemperature F(C)</Description>

<Value>82.0(27.8)</Value>
</Haximum_'l'emperature>

<Minimum_Temperature>

<Description>MinimumTemperature F(C)</Description>

<Value>62.1(16.7)</Value>
</Minimum Temperature>

<TD>
<Description></Description>

<Value>In the 6 hours preceding Oct 29, 1998 - 06:53 PM EST / 1998.10.29 23:53 UTC</Value>

</TD>
</Maximum.and Minumum Temperatures Child>
<Maximum.and _Minimum_ Temperatures Child>

<Maximum_Temperature>

<Description>MaximumTemperature F(C)</Description>

<Value>80.1(26.7)</Value>
</Maximum Temperature>

<Minimum_Temperature>

<Description>MinimumTemperature F(C)</Description>

<Value>45.0(7.2)</Value>
</Minimum Temperature>

<TD>
<Description></Description>

<Value>In the 24 hours preceding Oct 28, 1998 - 11:53 PM EST / 1998.10.28 0453 UTC</Value>

</TD>
</Maximum_and Minumum_Temperatures_ Child>
</Maximum_and Minumum_Temperatures>

Fig. 14. A fragment of the XML document for the NWS Savannah weather report page.

XWRAP Elite is more robust with respect to the
structural and presentation changes of the Web sites
being wrapped.

Our future work on XWRAP will involve
three distinct aspects of the prototype system.
The first aspect focuses on providing better
tools to assist user in choosing sample web
pages from the given web site and to incorporate
various machine learning algorithms to define
more robust information extraction rules. The
second aspect is to enrich the XWRAP informa-
tion extraction rule language and the component
library with enhanced pattern discovery capability
and various optimization considerations. The
third aspect concerns the incorporation of
Microsoft repository technology [30-32] to
handle and manage the versioning issue and
the metadata of the XWRAP wrappers. Further-
more, we are interested in investigating issues

such as whether the ability of following
hyperlinks should be a wrapper functionality
at the level of information extraction or a
gmediator functionality at the level of information
integration.

Acknowledgements

We would like to thank the XWRAP team
at Georgia Tech for their implementation
effort. Our thanks are also due to the editors
and reviewers of this special issue for their
helpful comments. The authors are partially
supported by NSF and DARPA/ITO under the
Information Technology Expeditions, Ubiquitous
Computing, Quorum, and PCES programs. A
short version [33] of this paper was presented at
ICDE 2000.

582 L. Liu et al. | Information Systems 26 (2001) 563—583

Appendix

A fragment of the XML document transfor-
med from the original HTML page by the
XWPAP_nws.noaa.gov wrapper program,
which was generated semi-automatically rising
XWRAP toolkit for the NWS web source, is given
in Fig. 14.

References

[1] C.A. Knoblock, S. Minton, J.L. Ambite, N. Ashish,
P.J. Modi, I. Muslea, A. Philpot, S. Tejada, Modeling
web sources for information integration, Proceedings of
AAATI Conference, 1998.

[2] L. Liu, C. Pu, W. Tang, Continual queries for

internet-scale event-driven information delivery, IEEE

Knowledge Data Eng. (Special Issue on Web Technology)

(1999) 610-628.

L. Liu, C. Pu, W. Tang, J. Biggs, D. Buttler, W. Han,

P. Benninghoff, F. Zu, CQ: a personalized update

monitoring toolkit. Proceedings of ACM SIGMOD

Conference, 1998.

N. Kushmerick, D. Weil, R. Doorenbos, Wrapper induc-

tion for information extraction, Proceedings of Interna-

tional Joint Conference on Artificial Intelligence (IJCAI),

1997.

H. Garcia-Molina, et al., The TSIMMIS approach to

mediation: data models and languages (extended abstract),

NGITS, 1995.

J. Hammer, M. Brennig, H. Garcia-Molina, S. Nesterov,

V. Vassalos, R. Yerneni, Template-based wrappers in the

tsimmis system, Proceedings of ACM SIGMOD Confer-

ence, 1997.

P. Atzeni, G. Mecca, Cut and paste, Proceedings of 16th

ACM SIGMOD Symposium on Principles of Database

Systems, 1997.

J. Hammer, H. Garcia-Molina, J. Cho, R. Aranha,

A. Crespo, Extracting semi-structured data from the

web, Proceedings of Workshop on Management of Semi-

structured Data, 1997, p. 18-25.

B. Adelberg, Nodose—a tool for semi-automatically

extracting structured and semi-structured data from text
documents, ACM SIGMOD, 1998.
[10] A. Sahuguet, F. Azavant, WysiWyg Web Wrapper Factory
(W4F), Proceedings of WWW Conference, 1999.

[11] N. Ashish, C.A. Knoblock, Semi-automatic wrapper
generation for internet information sources, Proceedings
of Coopis Conference, 1997.

[12] R. Doorenbos, O. Etzioni, D. Weld, A scalable compar-
ison-shopping agent for the world wide web, Proceedings
of Autonomous Agents, 1997, pp. 39-48.

3

[ty

[4

[l

(s

=

6

—_

[7

—

8

=

9

—

[13] N. Kushmerick, Wrapper induction for information
extraction, Ph.D. Dissertation, Department of Computer
Science, University of Washington, TR UW-CSE-97-11-
04, 1997.

[14] S. Soderland, Learning to extract text-based information
from the world wide web, Proceedings of Knowledge
Discovery and Data Mining, 1997.

[15] D. Raggett, Clean Up Your Web Pahes with HTML
TIDY, http://www.w3.org/People/Raggett/tidy/, 1999.

[16] W3C, Reformulating HTML in XML, http://www.w3.org/
TR/WD-html-in-xml/, 1999.

[17] G. Huck, P. Fankhauser, K. Aberer, E.J. Neuhold, Jedi:
exchanging and synthesizing information from the web,
Coopis, 1998.

[18] S. Abiteboul, D. Quass, J. McHugh, J. Widom, J. Weiner,
The lorel query language for semi-structured data,
J. Digital Library (1998).

[19] P. Buneman, S. Davidson, G.H.D. Suciu, A query
language and optimization techniques for unstruc-tured
data, Proceedings of ACM SIGMOD Conference, 1996.

[20] D. Konopnicki, O. Shemueli, W3qgs: a query system for the
world wide web, Proceedings of the Very Large Databases
Conference, 1995.

[21] A.O. Mendelzon, G. Mihaila, T. Milo, Querying the world
wide web, International Conference on Parallel and
Distributed Information Systems (PDIS), 1996.

[22] T. Kistlera, H. Marais, WebL: a programming language
for the web. http://www.research.digital.com/ SRC/WebL/
index.html, 1998.

[23] C. Allen, WIDL: application integration with XML,
World Wide Web J. 2(4) (1997).

[24] G. Arocena, A. Mendelzon, WebOQL: restructuring
documents, databases, and webs, Proceedings of ICDE’98,
February, 1998.

[25] A. Deutsch, M. Fernandez, D. Florescu, A. Levy, D.
Suciu, XML-QL: a query language for XML, http://
www.w3c.org/TR/1998/ NOTE-xml-ql-19980819 (1998).

[26] J. Gruser, L. Raschid, M. Vidal, L. Bright, A wrapper
generation toolkit to specify and construct wrappers for
web accessible data sources. ftp://ftp.umiacs.umd.edu/pub/
louiga/ BAA9709/PUB98/1CoopIS98.ps, 1998.

[27] WWWC, XML Pointer Language, http://www.w3.org/
TR/1998/WD-xptr-19980303, 1998.

[28] L. Liu, W. Han, D. Buttler, C. Pu, W. Tang, XWrap: an
XML-enabled wrapper construction system for web
information sources, Proceedings of the International
Conference on Data Engineering, San Diego, March
2000, pp. 611-621.

[29] D. Buttler, L. Liu, C. Pu, A fully automated object extract
system for the Web, Proceedings of the International
Conference on Distributed Computing Systems, Phoenix,
Arizona, April 2001, pp. 611-621.

[30] P.A. Bernstein, Microsoft repository, VLDB’97 Tutorial
and ACM SIGMOD’96 Tutorial, 1997.

[31] P.A. Bernstein, T. Bergstraesser, J. Carlson, S. Pal,
P. Sanders, D. Shutt, Microsoft repository version 2 and

L. Liu et al. | Information Systems 26 (2001) 563—583 583

the open information model, Information Systems 24 (2) [33] L. Liu, C. Pu, W. Han, XWrap: an XML-enabled wrapper
(1999). construction system for web information sources, Proceed-

[32] T. Bergstraesser, P.A. Bernstein, S. Pal, D. Shutt, Versions ings of the International Conference on Data Engineering,
and workspaces in microsoft repositories, ACM SIG- San Diego, March 2000, pp. 611-621.

MOD, 1999.

