Problemas de Condiciones de Contorno para Ecuaciones Diferenciales Ordinarias

Segundo curso - Grado en Física

Índice

Introducción

Métodos de disparo

Método de disparo para resolver problemas de ODE con condiciones de contorno

Cálculo de autovalores mediante métodos de disparo

Métodos de diferencias finitas

Introducción a las diferencias finitas

Diferencias finitas: métodos iterativos.

Diferencias finitas: solución directa

Ecuaciones en derivadas parciales por diferencias finitas

ODEs: Problemas de valor inicial

Se definen como

$$y'(t) = f(t, y) \text{ con } y(t_0) = y_0,$$
 (1)

donde y puede ser un "array".

- ▶ Dentro de unas condiciones muy razonables[1] (e.g. f y sus derivadas acotadas) tiene solución única.
- Ejemplo: y'' + y = 0 con y(0) = 0, y'(0) = 1.
 - La solución analítica es y(t) = sen(t).
 - ► Es de la forma 1 definiendo $y_1 \equiv y$, $y_2 \equiv y'$.
- Múltiples métodos de resolución numérica: e.g. Runge-Kutta.

ODEs: problemas de contorno

► Consideremos N > 1 ODEs acopladas, con n_1 condiciones en un punto y $n_2 = N - n_1$ condiciones en el otro

$$y'(t) = f(t, y', y) \operatorname{con} Ay(a) = \alpha, By(b) = \beta.$$
 (2)

donde *y* es un "array" de *N* elementos y *A* y *B* son matrices.

- En general, no se sabe si tiene solución.
- Ejemplos: y" + y = 0 tiene por solución y = c₁ sen(t) + c₂ cos(t), con c₁, c₂ constantes a determinar.
 - Exigiendo $y(0) = 0, y(\pi/2) = 1$ la solución única es y = sen(t).
 - Exigiendo $y(0) = 0, y(\pi) = 0$ existen múltiples soluciones de la forma $y(t) = c \operatorname{sen}(t)$.
 - Exigiendo $y(0) = 0, y(\pi) = 1$ no existe solución.

Ejemplos en Física

Estática: una cuerda suspendida por sus extremos.

$$\frac{d^2y}{dx^2} = \frac{\rho}{T}\sqrt{1 + \left(\frac{dy}{dx}\right)^2} \text{ con } y(0) = 0, y(x_B) = y_B.$$
 (3)

 Electrostática: potencial eléctrico (e.g. entre dos placas plano paralelas)

$$\frac{d^2\phi}{dz^2} = -\rho(z)/\varepsilon_0 \cos\phi(0) = 0, \phi(d) = V. \tag{4}$$

Métodos de disparo

Consideremos, por sencillez, el siguiente problema de CC

$$y'' = f(t, y, y') \operatorname{con} y(a) = \alpha, y(b) = \beta.$$
 (5)

Consideremos el problema de CI

$$y'' = f(t, y, y') \text{ con } y(a) = \alpha, y'(a) = s.$$
 (6)

- Los métodos de disparos se basan en hallar el valor de s para el cual $y(b) = \beta$.
- Por tanto, se componen de
 - un conjunto de integraciones de ODE con CI,
 - una busqueda de ceros de una función.
- Ejemplos: fichero "EXPLORACION_DISPARO.m", "DISPARO m"

Métodos de disparo: autovalores

- Consideremos el problema de una cuerda vibrante sujeta por sus dos extremos.
- La ecuación para su desplazamiento u(x,t) respecto al equilibrio es

$$\frac{\partial^2 u(x,t)}{\partial t^2} = \frac{T}{\mu(x)} \frac{\partial^2 u(x,t)}{\partial x^2}.$$
 (7)

- ► Las CC son u(x = 0, t) = 0, u(x = L, t) = 0.
- Puede resolverse por separación de variables $u(x,t) = y(x)\tau(t)$, obteniendo

$$\frac{d^2\tau}{dt^2} + \omega^2\tau = 0 \quad \Rightarrow \quad \tau(t) = a\mathrm{sen}(\omega t) + b\mathrm{cos}(\omega t)$$

$$\frac{d^2y}{dx^2} + \frac{\mu(x)\omega^2}{T}y = 0 \quad \text{con} \quad y(x=0) = 0, y(x=L) = 0$$

$$\frac{d^2y}{dx^2} + \frac{\mu(x)\omega^2}{T}y = 0$$
 con $y(x=0) = 0, y(x=L) = 0$

Método de disparo para resolver problemas de ODE con condiciones de contorno

Cálculo de autovalores mediante métodos de disparo

Métodos de disparo: autovalores

- De la separación de variables se obtiene un conjunto de soluciones.
- La solución de un problema dado con ciertas condiciones iniciales será una suma (en general infinita) de las soluciones halladas mediante la separación de variables.
- El parámetro ω aparece al separar las ecuaciones para y y τ, de forma que existirá solución sólo para ciertos valores de ω (autovalores).
- Válido para problemas lineales y homogéneos.

Método de disparo para resolver problemas de ODE con condiciones de contorno

Cálculo de autovalores mediante métodos de disparo

Métodos de disparo: autovalores

 Para hallar los autovalores (valores de ω para los que existe solución) redefinimos el problema de la siguiente forma

$$\frac{dy_1}{dx} = y_2 \tag{8}$$

$$\frac{dy_2}{dx} = -\frac{\mu(x)}{T}y_3y_1 \tag{9}$$

$$\frac{dy_3}{dx} = 0 ag{10}$$

donde $y_1 \equiv y$, $y_2 \equiv y'$ y $y_3 \equiv \omega^2$.

- Las condiciones de contorno pasan a ser $y_1(x = 0) = 0$, $y_1(x = L) = 0$, $y_3(x = 0) = \omega^2$.
- ▶ Para ello *fijamos el valor de y'*(0) y hallamos ω^2 mediante disparo (fichero *DISPARO AUTOVALOR.m*).

Método de disparo para resolver problemas de ODE con condiciones de contorno

Cálculo de autovalores mediante métodos de disparo

Métodos de diferencias finitas

Consideremos el siguiente problema de ODE con CC

$$y''(x) - 5y'(x) + 10y(x) = 10x$$
 (11)

donde
$$y(0) = 0, y(1) = 100.$$
 (12)

Aproximación de *diferencias finitas* sobre un conjunto finito de puntos $x_i = i\Delta_x$, con i = 1, 2, ..., N.

$$y(x_i + j\Delta_x) = y(x_i) + j\Delta_x \left(\frac{dy}{dx}\right)_{(x=x_i)} + \frac{1}{2}(j\Delta_x)^2 \left(\frac{d^2y}{dx^2}\right)_{(x=x_i)} + \theta(\Delta_x^3).$$

Entonces

$$y'_i = \frac{y_{i+1} - y_{i-1}}{2\Delta_x} + \theta(\Delta_x^2),$$
 (13)

$$y_i'' = \frac{y_{i+1} - 2y_i + y_{i-1}}{\Delta_x^2} + \theta(\Delta_x^2).$$
 (14)

Introducción a las diferencias finitas

Métodos de diferencias finitas

El problema original

$$y''(x) - 5y'(x) + 10y(x) = 10x$$
 (15)

donde
$$y(0) = 0, y(1) = 100.$$
 (16)

Se transforma en

$$\frac{y_{i+1} - 2y_i + y_{i-1}}{\Delta_x^2} - 5\frac{y_{i+1} - y_{i-1}}{2\Delta_x} + 10y_i = 10x_i \quad (17)$$

donde
$$y_1(0) = 0, y_N = 100.$$
 (18)

▶ El sistema de ecuaciones resultante (en y_i) es una aproximación de *diferencias finitas* a la solución del problema original y(x) sobre un conjunto finito de puntos $x_i = i\Delta_x$, con i = 1, 2, ..., N.

Métodos de diferencias finitas

Introducción a las diferencias finitas

Métodos iterativos

Diferencias finitas: métodos iterativos.

- ► Tratamos ahora de resolver las ecuaciones de diferencias finitas, *i.e.* sobre las *y_i*.
- Los *métodos iterativos* constituyen una forma de solución alternativa a la *solución directa*.
- ► Re–escribamos la ecuación para las *y_i* como

$$y_{i} = \frac{1}{2 - 10\Delta_{x}^{2}} \left[\left(1 - \frac{5\Delta_{x}}{2} \right) y_{i+1} + \left(1 + \frac{5\Delta_{x}}{2} \right) y_{i-1} - 10\Delta_{x}^{2} x_{i} \right].$$

$$(19)$$

El método de Jacobi halla una solución a través de iteraciones donde el paso j-ésimo, y_i^(j) viene dado

$$y_{i}^{(j)} = \frac{1}{2 - 10\Delta_{x}^{2}} \left[\left(1 - \frac{5\Delta_{x}}{2} \right) y_{i+1}^{(j-1)} + \left(1 + \frac{5\Delta_{x}}{2} \right) y_{i-1}^{(j-1)} - 10\Delta_{x}^{2} x_{i} \right]$$
(20)

⁻ Métodos de diferencias finitas

Métodos iterativos

► El *método de Gauss-Seidel* utiliza los valores de la iteracion *j*-ésima en cuanto están disponibles

$$y_i^{(j)} = \frac{1}{2 - 10\Delta_x^2} \left[\left(1 - \frac{5\Delta_x}{2} \right) y_{i+1}^{(j-1)} + \left(1 + \frac{5\Delta_x}{2} \right) y_{i-1}^{(j)} - 10\Delta_x^2 x_i \right].$$
(21)

El método de sobre-relajación sucesiva (SOR) añade a cada iteración una fracción α de la diferencia entre las dos últimas iteraciones:

$$\bar{y}_i^{(j)} = y_i^{(j)} + \alpha \left[y_i^{(j)} - y_i^{(j-1)} \right].$$
 (22)

- ▶ Dependiendo de los valores de α puede obtenerse convergencia mejorada o inestabilidad. El valor $\alpha = 0$ reproduce el método Gauss-Seidel.
- Ejemplos: ficheros ODE_ITERATIVO.m.

[└] Diferencias finitas: métodos iterativos.

Diferencias finitas: solución directa de problemas lineales

- Las ecuaciones de FD son un conjunto de ecuaciones algebraicas lineales.
- Las podemos resolver por los métodos habituales para resolución de sistemas lineales de ecuaciones (fichero FDSD.m).
- ► En este caso, la matriz del sistema de ecuaciones es TRIDIAGONAL (relaciona cada nodo con los vecinos). Las ecuaciones para *N* nodos son de la forma

$$a_{i-1,i}y_{i-1} + a_{i,i}y_i + a_{i,i+1}y_{i+1} = d_i \text{ con } i = 1,...,N,$$
 (23)

donde se ha supuesto que los nodos del contorno se dan para i = 0 e i = N + 1.

Diferencias finitas: métodos iterativos.

Diferencias finitas: solución directa de problemas lineales

La matriz del sistema de ecuaciones

$$\mathbf{A} = \begin{pmatrix} a_{1,1} & a_{1,2} & 0 & 0 & 0 & \dots \\ a_{2,1} & a_{2,2} & a_{2,3} & 0 & 0 & \dots \\ 0 & a_{3,2} & a_{3,3} & a_{3,4} & 0 & \dots \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & a_{N-1,N-2} & a_{N-1,N-1} & a_{N-1,N} \\ 0 & 0 & 0 & 0 & a_{N,N-1} & a_{N,N} \end{pmatrix}$$
(24)

Para los nodos del contorno, hay que tener en cuenta

$$a_{1,1}y_1 + a_{1,2}y_2 = -a_0y_0$$
 (25)

$$a_{N,N-1}y_{N-1} + a_{N,N}y_N = -a_Ny_{N+1}$$
 (26)

► El sistema de ecuaciones es de la forma A · y = b.

Métodos de diferencias finitas

Diferencias finitas: solución directa

Diferencias finitas: solución directa de problemas NO lineales

En el caso de problemas no lineales

$$f(x, y(x), y'(x), y''(x)) = 0.$$
 (27)

▶ Puede elaborarse una aproximación de diferencias finitas sobre la malla $x = i\Delta_x$, con i = 0,...,N+1, obteniendo N ecuaciones no lineales

$$f(x_i, y_i, \frac{y_{i+1} - y_{i-1}}{2\Delta_x}, \frac{y_{i+1} - 2y_i - y_{i-1}}{\Delta_x^2}) = 0.$$
 (28)

► El sistema de ecuaciones resultante puede resolverse por los métodos iterativos habituales para resolución de sistemas de ecuaciones no lineales, a partir de una estimación inicial de la solución (e.g. métodos de Newton).

Diferencias finitas: solución directa

Ecuaciones en derivadas parciales: diferencias finitas

De nuevo la ecuación de una cuerda vibrante

$$\frac{\partial^2 u(x,t)}{\partial t^2} = \frac{T}{\mu(x)} \frac{\partial^2 u(x,t)}{\partial x^2}.$$
 (29)

con CC $u(x_a, t) = 0$; $u(x_b, t) = 0$ y CI para u(x, t = 0) = f(x), $\frac{\partial u}{\partial t} = g(x)$.

▶ Discretización de FĎ en $x_i = i\Delta_x$ y $t_j = j\Delta_t$

$$\frac{u_i^{j+1} - 2u_i^j + u_i^{j-1}}{\Delta_t^2} - c^2 \frac{u_{i+1}^j - 2u_i^j + u_{i-1}^{j-1}}{\Delta_x^2} = 0.$$
 (30)

donde $u_i^j = u(x_i, t_i)$ y $c^2 = T/\mu$.

▶ Despejando u^{j+1}

$$u_i^{j+1} = \frac{\Delta_t^2 c^2}{\Delta_x^2} (u_{i+1}^j + u_{i-1}^j) + 2\left(1 - \frac{\Delta_t^2 c^2}{\Delta_x^2}\right) u_i^j - u_i^{j-1}. \quad (31)$$

Condiciones iniciales

Para la CI tendríamos

$$\left. \frac{\partial u}{\partial t} \right|_{t=0} = \frac{u_i^1 - u_i^{-1}}{2\Delta_t} = g(x_i). \tag{32}$$

▶ Despejamos u_i^{-1} y lo introducimos en la expresion general

$$u_i^1 = \frac{\Delta_t^2 c^2}{2\Delta_x^2} (u_{i+1}^0 + u_{i-1}^0) + \left(1 - \frac{\Delta_t^2 c^2}{\Delta_x^2}\right) u_i^0 + \Delta_t g(x_i) \quad (33)$$

 Resolución con Matlab del problema de la cuerda: fichero FDTD1D.m.

Bibliografía

- J. Stoer, R. Bulirsch, *Introduction to numerical analysis*, Springer-Verlag, 1980.
- W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, *Numerical Recipes*, Cambridge University Press, 1990. Disponible en
 - http://www.nr.com/oldverswitcher.html.
- Ross L. Spencer, Michael Ware, Computational Physics 430: Partial Differential Equations. Department of Physics and Astronomy, Brigham Young University. Disponible en http://www.physics.byu.edu/Courses/Computational/.
- R. Haberman, Elementary applied partial differential equations, Prentice Hall, 1983.