
1 of 8

A MOBILE AGENT-BASED COMMUNICATIONS MIDDLEWARE
FOR DATA STREAMING IN THE BATTLEFIELD

Marco Carvalho, Niranjan Suri, Marco Arguedas
 Florida Institute for Human and Machine Cognition

40 S. Alcaniz St. Pensacola, FL 32502
(Paper Abstract ID: 1482)

ABSTRACT

In this paper we introduce the FlexFeed framework in the
context of military combat operations. FlexFeed realizes
the notion of Agile Computing for streaming data commu-
nications and implements a flexible, robust and efficient
publish/subscribe infrastructure for dynamic ad hoc envi-
ronments under resource and policy constraints. The
framework uses mobile software agents for underlying
configuration and policy enforcement. The paper illus-
trates the effectiveness of the framework with quantitative
experiments over simulated scenarios.

INTRODUCTION

Dependable communication capabilities are amongst the
most important technical requirements for mission success
in military operations. Complex missions involving coali-
tion forces, robotic support units, remote sensor beds and
autonomous vehicles will require underlying communica-
tion infrastructures that are more flexible, efficient, and
robust in order successfully operate in the face of enemy
attacks.

Most communications between peers in the battlefield are
either to exchange state and environmental information or
to relay command and control messages. State information
includes, for instance, relative position of troops and vehi-
cles (enemy and friendly), sensor data from unmanned ve-
hicles or sensor beds, situation data, etc. This type of data
is often transmitted as streams of arbitrary durations, such
as video-feeds from a camera sensor or continuous GPS
position data from moving vehicles or troops.

Furthermore, the communications infrastructure must ad-
just to changes in overall mission goals and operations
tempo. During monitoring and recognition missions, con-
serving power might be the primary objective function to
extend the life of network resources. However, as engage-
ment takes place, the communications infrastructure may
need to quickly shift into a high performance mode to ef-
fectively support and optimize the kill chain as the primary
objective.

In this paper we present FlexFeed, a mobile-agent based
communications framework, applied to the battlefield sce-

nario. Our proposal leverages from years of research in the
fields of mobile ad hoc networks and intelligent software
agents to build an efficient, self-configurable, and self-
healing communications network for these types of envi-
ronments.

After an introductory description of the environment and
system requirements, we will discuss the related work in
this area and the concepts proposed in FlexFeed. A brief
description of the implementation details of framework
will be then followed by case studies, presented and ex-
perimentally evaluated on a simulated network to illustrate
FlexFeed capabilities.

COMMUNICATIONS IN THE BATTLEFIELD

As part of the Army’s Objective Force to be deployed
within the next decade, Future Combat Systems (FCS) is
envisioned as a system of systems that will integrate sev-
eral lightweight, highly mobile components including new
generations of manned and unmanned military vehicles
(Sharoni & Bacon, 1997; Pike, J., 2003). These light vehi-
cles will partially replace heavy armored slower vehicles
in order to bring unprecedented levels of dynamism and
agility to the combat theater.

Furthermore, FCS operations will heavily rely on informa-
tion superiority to quickly take control of the battlefield
and appropriately react to enemy movements and changes
of strategy. This capability depends on the notion of uni-
versal tasking, where resources and information are di-
rectly available at any time to the edge warriors and com-
manders in the field.

An enabling key-capability for this vision is an efficient
and adaptive communications infrastructure to support and
extend edge warrior capabilities and provide access to
critical information at any time, while at the same time
ensuring optimal resource utilization and security both at
the infrastructure and information levels. Figure 1 shows a
schematic view of some of the elements involved in these
types of operations.

In general, a communications model capable of supporting
FCS requirements is an ad-hoc publish/subscribe model.
Soldiers and systems in the network will subscribe to sen-

2 of 8

sor data and state information to plan and coordinate local
tasks in response to high level instructions from the com-
mand and control center.

Sensor BedSoldiers
Figure 1 – Communications infrastructure in the battlefield

Based on FCS requirements, an appropriate data commu-
nications framework must be capable of satisfying the fol-
lowing requirements:

a) Ad hoc: In most cases, as illustrated in figure 1, net-
works between nodes will be ad hoc, formed by proximity
during the operation itself. The communications infrastruc-
ture must not depend on pre-established infrastructural
components or centralized management stations. This ca-
pability is important both from a scalability and robustness
perspective, eliminating (or mitigating) single points of
failure in the network.

b) Efficiency: Communications and computational re-
sources in the battlefield are expected to be limited and
often times, battery operated. Ad hoc sensor beds and
small autonomous vehicles deployed during the operation
will have a life-span strictly limited by their battery life. In
most cases, it is imperative that the communications infra-
structure operate efficiently across different types of appli-
cations and scenarios to extend the life of network re-
sources.

c) Heterogeneity: Systems in the battlefield tend vary
greatly in terms of computation and communications ca-
pabilities. Lightweight attack vehicles, small robotic units,
and unmanned aerial vehicles will all have different de-
grees of computation and sensing capabilities and access to
the wireless environment.

d) Application-aware Capabilities: A common limitation in
most communications frameworks currently available is
the lack of interaction between applications and the under-
lying data transmission protocols. This limitation is often
accepted in lieu of the benefit of layer isolation and in
making protocols interchangeable. For improved effi-
ciency however, the communications infrastructure can
and should benefit from data-aware protocols at all levels.

d) Robustness to External Attacks: The communications
infrastructure must be able to resist to both physical and
network attacks. Degradation with loss of communication
resources must be graceful and most importantly, must be
selective. Special types of operations and tasks that are
critical to the overall operation must have precedence over
less relevant tasks. This requirement goes beyond the con-

ventional notion of quality of service in data networks.
Ideally, the framework must be aware of the importance of
data transmission not only in terms of data-type, source,
and destination, but also in terms of high level goals and
mission OPTEMPO in order to make prioritization deci-
sions.

c) Robustness to Environmental Changes: The environ-
mental conditions, topology, and size of the network will
vary significantly. In the battlefield, nodes can arbitrarily
join and leave the network. Nodes can be physically de-
stroyed or made unavailable at any time. An appropriate
communications infrastructure must be able to cope with
these changes quickly and efficiently.

e) Reactive and Proactive OPTEMPO Adaptability: The
framework must also be able to properly adapt to change
in overall mission goals or situation in the battlefield. For
instance, changes in operational tempo can be either
pushed to or autonomously detected by framework nodes,
which should automatically result in changes in the com-
munications behavior. For instance, when precursors of
engagement are identified, the framework, in accordance
with global policies, must autonomously switch from a
power efficient mode a low latency, high performance
mode to support combat systems.

f) Proactive Resource Manipulation for Survivability and
Improved Efficiency: This notion was initially proposed
within the context of Agile Computing (Suri, 2002). It re-
fers to the notion of granting the framework with the abil-
ity to proactively manipulate physical (or logical) re-
sources in the framework in order to recover critical
connectivity segments or to significantly improve per-
formance.

g) High Level Policies for Monitoring and Control: From a
human perspective, monitoring and control of such com-
plex systems is a very difficult task. An appropriate frame-
work for these types of systems must support interfaces to
policy infrastructures that would allow humans to easily
define and establish constraints and obligations to regulate
the overall operation of the framework. From an optimiza-
tion perspective, most policies would ultimately result in
low level constraints taken into account by the framework
when deciding about resource allocation.

In the last few years, a number of research proposals have
been introduced to address some of these requirements.
Common to most of them is the notion of a customizable
publish/subscribe communications mechanism capable to
efficiently support messaging and data streaming.

RELATED WORK

Conventional topic-based publish/subscribe systems such
as such as Vitria (Skeen, 1998), TPS (Eugster et al., 2001)

3 of 8

and JORAM (Maistre, 2003) leveraged form multicast pro-
tocols and the assumption of a clear hierarchy on data and
events to build efficient multicast groups for topic-based
data distribution. Multicast based protocols often provide
an efficient solution to the problem but they assume that
only nodes participating in the multicast group would
share the data for distribution (at the level of the multicast
tree). Furthermore, most multicast protocols assume data
(or events) to be strictly hierarchical and processing capa-
bilities for data transformation within the hierarchy must
be available a priori at all nodes.

A number of gossip-based (or epidemic) protocols were
also proposed in the same context (Lin and Marzullo,
1999; Ganesh et al., 2001; Eugster et al., 2003). In general,
these are efficient and scalable protocols but assume no
data hierarchy and often make no attempt for cost or con-
straint optimization based on data stream aggregation and
filtering.

Multicast protocols specifically designed for peer-to-peer
networks such Scribe (Rowstron et al., 2001) and HiCan
(Ratnasamy et al., 2001) came to solve scalability issues in
addressing and group coordination. They too, however,
assumed that only nodes subscribed to the multicast group
would participate in the multicast tree and that data proc-
essing capabilities are available at all nodes a priori.

Alternatives to the multicast option were also proposed at
the level of unicast routing in the form of data-aware cus-
tomized ad hoc routing protocols. An important example
of these types of data-centric routing protocols is Directed
Diffusion (Intanagonwiwat et al. 2000). The Directed Dif-
fusion protocol proposes a highly scalable data-aware de-
centralized routing algorithm. The protocol supports the
creation of data distribution trees including nodes that are
not directly subscribing for the data. The protocol, how-
ever, also assumes that data transformation capabilities are
available a priori at each node, which is not a realistic as-
sumption for the types of environments envisioned in FCS.

More recently, Baehni et al. (2004) proposed a data-aware
multicast protocol (daMulticast) for peer-to-peer networks.
The approach leveraged from some of the data-centric
techniques for data description and group membership,
significantly improving reliability and at the same time
reducing the memory complexity involved in maintaining
group membership at each node.

In the most part, the approaches share the notion of using
data-aware techniques for resource or performance optimi-
zation. The problem, however, is that data-aware frame-
works are usually highly customized to a set of applica-
tions or data types, often requiring significant time and
effort to support new scenarios or capabilities. In many
cases, such changes are not even possible, as hardware

might have been already deployed or might be under ex-
ternal administrative control, like in the case of combat or
Military Operations Other than War (MOOTW) coalition
operations.

THE FLEXFEED FRAMEWORK

In this paper we propose FlexFeed, a mobile-agent based
communications framework designed to support highly
customized data streams in mobile ad-hoc network envi-
ronments under policy and resource constraints.

The concepts implemented in FlexFeed were first intro-
duced by Carvalho et al. (2002). The fundamental ideas of
the framework are based on the concepts of Agile Comput-
ing (Suri, 2002) where network and system resources are
opportunistically exploited to transparently support appli-
cation requests in a manner that is efficient, robust, and
adaptable to changes in the environment.

The FlexFeed framework is essentially based on three core
concepts: a) Opportunistic resource exploitation; b) Flexi-
bility and run time self-configuration via on-demand code
and process migration; and c) In-stream data processing. In
the framework, these capabilities are combined and ex-
tended to address the requirements identified in the types
of environments expected in FCS.

The framework uses data-aware mobile agents to better
customize multicast trees and to provide in-stream data
processing (i.e. to take advantage of the multi-hop nature
of the communications path in these types of environments
to distribute computation data processing loads). Special-
ized agents can be injected in the framework by authorized
parties at run-time, allowing for great flexibility and sup-
port of highly specialized data streams. The overall behav-
ior of the framework is regulated by high level policies
defined, verified, and distributed by an integrated policy
infrastructure designed for multi-agent systems. A proof-
of-concept version of the FlexFeed framework was devel-
oped and tested both in simulated and physical environ-
ments. The framework was also demonstrated in actual
live exercises conducted by the Army (ARL QL2, 2004)
and the demonstrations for the Navy (ONR NAIMT,
2004). In the subsequent items, we will briefly discuss the
implementation details of the framework, followed by ex-
perimental simulation results of illustrative case studies.

THE FRAMEWORK COMPONENTS

The FlexFeed framework is a distributed application-level
middleware that is installed in all participating systems.
The middleware provides an API that allows applications
to specify services or requests for data streaming.

At the implementation level, the framework combines a
mobile agent system with resource coordination and allo-

4 of 8

cation mechanism and a policy infrastructure to determine
and configure, at runtime, efficient data distribution trees
between applications.

The mobile agent system gives the framework the ability
to move code and computation between nodes to enable,
on demand, new data-specific capabilities in nodes that
will participate in the data distribution tree. Process migra-
tion is used to improve survivability and system perform-
ance. Although FlexFeed can be easily configured to work
with different agent systems, our proof of concept imple-
mentation was developed on top of the NOMADS agent
system (Suri et al., 2000; Groth and Suri, 2000).

NOMADS is a mobile agent system for Java-based agents.
It provides two implementations: Oasis and Spring. Oasis
incorporates a custom Java-compatible Virtual Machine
(named Aroma) whereas Spring is a pure Java implemen-
tation. The Aroma VM is a clean-room VM designed to
provide the enhanced capabilities of execution state cap-
ture and resource control.

The resource coordination component (referred to in this
paper as the ‘coordinator’) is the intelligent part of the
framework. It is responsible for realizing the notion of ag-
ile computing in the context of data streaming. The ‘coor-
dinator’ can be implemented as a distributed process or as
a centralized component operating in one of the nodes of
the framework. All experiments and examples shown in
this paper are based on one specific implementation of a
centralized coordination algorithm (ULM) but decentral-
ized alternatives are also available.

The policy infrastructure is independent of the framework.
The goal of the policy framework is to provide a high level
interface to the system in order to allow both human opera-
tors and applications to establish, query and modify high
level requirements and constraints that will regulate how
the framework should operate. Furthermore, the policy
infrastructure is also responsible for validation, verifica-
tion, disambiguation, and distribution of policies through-
out the system. Policies can also be used to regulate and
constrain the autonomous behavior of the framework, pro-
viding bounds for self-adjustments to operation tempo and
to the proactive manipulation of resources. Currently,
FlexFeed uses KAoS (Bradshaw et al., 1997; Bradshaw et
al. 2002; Bradshaw et al., 2003) as its policy framework.

Access to these components is available at each node
through a common API. In order to participate in the
framework, applications at each node can obtain an in-
stance of the FlexFeedManager Component (Figure 2).
The FlexFeedManager provides the access API to the

framework and allows applications to register, advertise
capabilities, and request data streams from other resources.

Spring

Host A

Spring

FlexFeedManager

Soldier(C)

Host B

FlexFeedManager

Sensor (S)

request

data-feedrequest request

data-feeddata-feed

Figure 2 – The FlexFeed Framework.

Transparent to the applications, FlexFeedManagers at each
node communicate in a peer-to-peer fashion to exchange
state and plan resource utilization. When a client places a
request for a data stream from a sensor as illustrated in
figure 2, it specifies the source of the data and the re-
quirements for the data stream (for example, resolution
and frame rate in the case of a video stream).

That information, along with resource availability informa-
tion from local nodes, is used to build the data distribution
tree from source to client. If using a centralized coordina-
tor, the planning is done at one single location using global
state data. Decentralized coordination algorithms rely on
peer to peer negotiation between FlexFeedManagers and
use only local state for planning.

The client is allowed to specify any type of data, granted
that it provides to the framework the necessary information
for cost calculation and the code (in the form of mobile
agents) necessary to manipulate (e.g. aggregation and fil-
tering) the data for optimization. Because FlexFeed sup-
ports on-demand code deployment, trusted applications
can provide new components to the framework at run time,
enabling the support of previously unknown data types.

Figure 3 – A Complex Data Request

The client can also provide complex data processing re-
quests such as the one illustrated in figure 3. In that exam-
ple, the client is specifying (through a graph structure) two
distinct data sources that should be merged with a specific
(client-provided) processing element (FS) and then, dis-
criminatively delivered to two sink nodes. Details about
the data types and processing elements are embedded in
the graph node and edge components, using a pre-defined
data structure provided by the framework.

The FlexFeed framework will load the appropriate soft-
ware components specified by the client (either from the
client host of from a common codebase) and will identify

5 of 8

the network resources necessary to support the request.
The location of the logical fusion element (FS) can be at
any intermediate node between the source and sink ele-
ments, based on resource availability, policies, and overall
costs for computation and data transmission.

After mapping the request to the physical network, the
framework will monitor environmental changes (such as
significant variations in resource availability or link fail-
ure) to transparently recalculate and adjust the data tree
until the request is terminated by the client.

CASE STUDIES AND EXPERIMENTAL RESULTS

The framework was tested in a simulated network where
packet drops and bandwidth constraints could be carefully
controlled. The goal of these tests was to demonstrate the
effectiveness of on demand configuration of data-aware
streaming in the improvement of data quality and reduc-
tion of jitter. These metrics are highly relevant to applica-
tions such as the remote control of unmanned vehicles.

The overhead of the framework was also measure in terms
of induced latency in the stream. The computational over-
head for running intermediate processing elements and
filters was disregarded and the coordination mechanism
used in the experiments was the centralized ULM (Car-
valho, 2005) algorithm, based on an iterative version of
Dijkstra’s shortest path algorithm applied in localized parts
of the graph.

The experiments were conducted on a 100baseT network
with full connectivity. Bandwidth limitations between
UAV and other nodes were simulated on a fixed wired
network. Figure 4 provides a schematic view of the test
networks.

S1

S2

T2

UAV

Figure 4 – Schematic illustration of the environment con-

sidered for experiments

In this configuration, nodes ‘S1’ and ‘S2’ represent two
dismounted soldiers in direct communications range with
each other and with a tank nearby ‘T2’. All nodes are in
communications range with an unmanned aerial vehicle
‘UAV’ on a fixed flying pattern over enemy territory.

The bandwidth available from the UAV to the remaining
nodes is variable and can be severely constrained at differ-
ent times. Our experimental procedure explores different

operational scenarios on top of this configuration. The goal
is to quantitatively illustrate how the FlexFeed framework
improves data communications by reducing delays be-
tween image updates and the variance between packet ar-
rival times (jitter). In our experimental setup, each node is
represented by a separate laptop. The bandwidth limita-
tions on the UAV are simulated by a gateway running
NISTNet (Carson, 2002). Figure 5 shows the experimental
setup designed to simulate the environment illustrated in
figure 1.

S1

S2

T2

UAV
NISTNET

Figure 5 – Experimental setup

The centralized coordination node (not shown in figure 5)
receives state information such as CPU and bandwidth
availability from each of the 4 nodes involved in the test.
The frequency of updates is proportional to the rate of
change in these metrics. When a client makes a request for
a data stream, it specifies the source node (UAV), frame
rate, and resolution. The coordinator node will receive the
request and will handle it appropriately, building a data
distribution tree from the source, based on current global
system state.

Optimizing Bandwidth Utilization

In the first scenario, soldier ‘S1’ temporarily assumes con-
trol of the UAV, taking it out of the flying pattern and
closer to enemy positions. Unaware of the fact that the ve-
hicle is now under remote control, soldier ‘S2’ also re-
quests a video stream from the UAV’s camera. In this ex-
ample, both video streams were requested at a 320x240
resolution with 3 frames per second.

Under unconstrained conditions, the combined streams
require the UAV to send approximately 50 KBps of data.
In the initial condition the bandwidth limitation is 100
KBps (equivalent to unconstrained bandwidth in this ex-
ample) so there are no packet drops and the average delay
between images is 271 milliseconds, which represents a
stream of approximately 2.69 frames per second. Note that
the resulting frame-rate, even under unconstrained band-
width conditions, only approximates the requested frame-
rate. This is due to the delays involved in actual image
capture (which is camera dependent), compression, and
serialization.

The bandwidth available from the UAV is then progres-
sively reduced to a maximum of 40 KBps, 30 KBps, and

6 of 8

then 24 KBps. At each step, the average delay between
images is measure at each client ‘S1’ and ‘S2’.

When the coordinator is inactive, that is, when the frame-
work is not making any attempt to optimize data streams,
the sensor (UAV) sends a unicast stream to each of the
clients. Both streams will compete for the limited band-
width and the delays at each client increase significantly
with the reduction in bandwidth availability. These results
are shown in figure 6, with their 95% confidence error
margins.

Client A Client B

427 6±
1230 193±
2978 690±

5354 1920±

430 8±
570 23±

4760 5114±
8883 5364±

100 KBps
40 KBps
30 KBps
24 KBps

T2

S2

S1

UAV

Figure 6 – Effects of bandwidth reduction without data
stream coordination.

In this example, as the bandwidth availability decreases,
the delays quickly increase to the point where critical
tasks, such as the remote control of the UAV, are com-
pletely compromised. A minimum frame-rate of 2 fps is
required1, in this example, to safely navigate the UAV so it
is clear that even small constraints in bandwidth availabil-
ity can compromise this task. Furthermore, we can verify
the well known bandwidth stealing behavior between cli-
ents, where bandwidth is not equally shared between
streams. This behavior has been previously reported in IP
networks (Tschudin and Ossipov, 2004) and could com-
promise critical tasks such as the control of the UAV.

100 KBps
40 KBps
30 KBps
24 KBps

Client A Client B

382 4±
382 4±
384 9±

514 20±

401 9±
383 6±
381 9±

514 20±

T2

S2

S1

UAV

Figure 4 – Data distribution tree created by FlexFeed

When the FlexFeed coordinator is enabled, the framework
identifies the stream requests and attempts to globally op-
timize data distribution. In this specific case, the coordina-
tor (which, is a centralized process) determines that both
streams are similar (in fact, equal) and the overall band-
width utilization can be reduced with a multicast-like data
distribution tree. The framework opportunistically identi-

1 Although it is commonly accepted that a minimum of four frames per

second is necessary to remotely operate robotic vehicles, for illustra-
tion purposes in this example, the minimum requirement for tele-
operation is assumed to be two frames per second.

fies node ‘T2’ as a potential intermediate processing ele-
ment and builds the distribution tree illustrated in figure 4.

Under the same bandwidth constraints, the framework en-
sures that the lowest capacity link (from the UAV) is not
saturated and delays between images are kept within rea-
sonable bounds.

Furthermore, the variance in delay (jitter) is significantly
smaller, ensuring that critical processes maintain minimum
levels of throughput and quality of service.

FlexFeed Overhead

The overhead of framework basically falls into two main
categories: a) the number of additional control messages
involved on sharing state between nodes (or between
nodes and the centralized coordinator) and b) the time re-
quired to determine, locate, and configure the nodes that
will participate in the data stream. Both factors are highly
dependent on the type of coordination mechanism used in
the framework (centralized, zone-based, or local), the com-
plexity of the data, the scale of the network, its level of
connectivity, and the frequency of state updates.

In our example, the network topology is static and varia-
tions in resource availability are small so our attention is
focused primarily on the delays (latency) caused by the
centralized coordination algorithm. Table 1 shows the av-
erage delays and their 95% confidence error margins ob-
served in each test, both with and without the coordinator.
The delays were measured as the average between the time
of the second client ‘S2’ request and the time when the
first image is delivered to that client.

 No Coordinator Coordinator

100 KBps 978 ± 37 1845 ± 85

40 KBps 1175 ± 126 2187 ± 95

30 KBps 1184 ± 571 2330 ± 180

24 KBps 1942 ± 310 2418 ± 204

Table 1 – Average delays for starting the stream

When the coordinator is present (second column), there is
an up-front cost in terms of latency that is due to the time
spend in identifying and configuring network resources for
data distribution. When the coordinator is not present, the
response to the data request is relatively fast at first but the
delays increase as the bandwidth is reduced. This is basi-
cally due to the fact that initial images are being lost on the
saturated channel when the coordinator is not present.

FlexFeed versus Multicast

The data distribution tree presented in this example resem-
bles a data multicast tree, often obtained with conventional
data multicast algorithms. As previously noted, FlexFeed

7 of 8

goes beyond conventional and data-aware multicast ap-
proaches by building a tree that include nodes that are not
necessarily part of the multicast group (node T2 in this
case). These nodes are opportunistically discovered and
configured, at runtime by the framework, based on its cur-
rent resource availability, role in the network, and system
policies.

Furthermore, the configuration of node T2 can be highly
data-dependent and arbitrarily complex. In these examples,
the intermediate node was use merely as a splitting point
for the data distribution tree. It could also have received
customized code to perform in-stream data transformation
or specialized filtering.

Consider the case where the request place by soldier ‘S2’
was for a lower resolution video stream from the same
source. Multicast algorithms would often regard this as an
independent request or would have assumed that one of the
nodes in the multicast group would be able to reduce the
resolution of the stream to include the new request in the
data hierarchy. Data-centric protocol like Directed Diffu-
sion would also depend on an intermediate node’s a priori
capabilities to construct the low resolution data from the
high resolution stream.

In FlexFeed, the request placed by soldier ‘S2’ can specify
references to data-specific code that will be installed, on
demand, on node ‘T2’ to act as a processing element. The
code would be installed only in the necessary nodes (as
determined by the coordination algorithms) and would be
removed when no longer necessary.

Another extension of the same capability is the transparent
enforcement of information release policies. In this case,
upon S2’s data request, FlexFeed would query the policy
framework for constraints or obligations involving the re-
quest. Consider, for example, that policies were previously
defined to constrain unrestricted access from S2 to that
specific data source. In that case the framework will,
transparent to node ‘S2’, identify an intermediate node for
policy enforcement and will deploy the customized data
filters (specified as part of the policy) to ensure compli-
ance with the specified requirements. This feature of Flex-
Fleed has been extensively demonstrated by (Suri, Brad-
shaw et al, 2003; Suri, Carvalho et al, 2003) in multiple
simulations and real life exercises.

CONCLUSIONS AND FUTURE WORK

In this paper we have introduced the FlexFeed framework
in the context of military combat operations. The concept
proposed in FlexFeed goes beyond current data-centric
routing approaches and data-aware multicast. It realizes
the notion of agile computing in the context of data com-
munications and offers the basis for a truly customizable

middleware for data communications in extreme environ-
ments.

The framework is currently implemented and has been
tested in several small scale exercises including soldiers
operating in conjunction with robotic units and remote sys-
tems. The framework currently relies on a centralized co-
ordination algorithm for resource allocation. We are cur-
rently developing fully decentralized (and zone-based)
algorithms to improve scalability, robustness, and per-
formance.

REFERENCES
Baehni, S., Th, P. and Guerraoui, E., Data-Aware multicast. In
Proceedings of the 5th IEEE International Conference on De-
pendable Systems and Networks (DSN '04), June 2004.

Bradshaw, J.M. et al.: “KAoS: Toward an Industrial-Strength
Generic Agent Architecture.” Software Agents, AAAI
Press/MIT Press, Cambridge, Mass. 1997, pp. 375-418.

Bradshaw, J. M., Suri, N., Breedy, M. R., Canas, A., Davis, R.,
Ford, K. M., Hoffman, R., Jeffers, R., Kulkarni, S., Lott, J.,
Reichherzer, T., & Uszok, A. (2002). Terraforming cyberspace.
In D. C. Marinescu & C. Lee (Ed.), Process Coordination and
Ubiquitous Computing. (pp. 165-185). Boca Raton, FL: CRC
Press.

Bradshaw, J.M., Uszok, A., Jeffers, R., Suri, N., Hayes, P.,
Burstein, M., Acquisti, A., Benyo, B., Breedy, M., Carvalho, M.,
Diller, D., Johnson, M., Kulkarni, S., Lott, J., Sierhuis, M., and
Van Hoof, R. Representation and Reasoning for DAML-Based
Policy and Domain Services in KAoS and NOMADS. In Pro-
ceedings of the 2nd International Joint Conference on Autono-
mous Agents and Multi-Agent Systems (AAMAS) 2003.

Carvalho, M. and Breedy, M. (2002) Supporting Flexible Data
Feeds in Dynamic Sensor Grids Through Mobile Agents. In Pro-
ceedings of the 6th International Conference in Mobile Agents
(MA 2002) Agents, Barcelona, Spain, October 2002.

Carvalho, M., Bertele, F., Suri, N. ULM – A Centralized Co-
orindation Algorithm for FlexFeed. (to appear) In Proceedings
of the 9th World Multi-Conference on Systemics, Cybernetics
and Informatics. Florida, October 2005.

Carson, M. and Santay, D. NIST Net – A Linux-based Network
Emulation Tool. 2002. Available online at: http://www-
x.antd.nist.gov/nistnet/nistnet.pdf

Eugster, P.Th.,Guerraoui, R., Handurukande, S., Kermarrec,
A.M., and Kouznetsov, P.. Lightweight Probabilistic Broadcast.
In Proceedings of the ACM Transactions on Computer Systems
(TOCS), pages 341–374, november 2003.

Eugster, P.Th., Guerraoui, R., and Damm., C.H. On Objects
and Events. In Proceedings of the 16th ACM Conference on

8 of 8

Object-Oriented Programming Systems, Languages and Appli-
cations(OOPSLA 2001), pages 131–146, October 2001.

Lin, M.J., and Marzullo, K.. Directional Gossip: Gossip in a
Wide Area Network. In Proceedings of the 3rd European De-
pendableComputing Conference (EDCC), pages 364–379,
September 1999.

Ganesh, A.J., Kermarrec, A.M., and Massouli´e, L.. Scamp:
Peer-to-peer lighweight membership service for large-scale
group communication. In Proceedings of the 3rd International
Workshop on Networked Group Communication (NGC), 2001.

Groth, P. and Suri, N. Cpu resource control and accounting in
the nomads mobile agent system. In Proceedings of the ACM
OOPSLA Workshop on Experiences with Autonomous Mobile
Objects and Agent Based Systems, Minneapolis, USA, Oct.
2000.

Maistre, F.. Joram. (2003) Available online at http://joram.ob-
jectweb.org; accessed on May 2005.

Skeen, D. Vitria’s Publish-Subscribe Architecture: Publish-
Subscribe Overview. http://www.vitria.com, 1998.

Pike, J. (2003). Future Combat Systems (FCS). Retrieved De-
cember 18, 2003 from http://www.globalsecurity.org/military/
systems/ground/fcs.htm. Accessed on May 2005

Rowstron, A., Kermarrec, A.M., Castro, M., and P. Druschel.
SCRIBE: The Design of a Large-Scale Event Notification Infra-
structure. In Proceedings of the 3rd International Workshop
on Networked Group Communication (NGC), November
2001.

Ratnasamy, S., Handley, M., Karp, R., and Shenker, S., Applica-
tion-Level Multicast Using Content-Addressable Networks. Lec-
ture Notes in Computer Science, 2233:14–29, 2001.

Sharoni, A., & Bacon, L. (1997). The Future Combat System
(FCS). A Technology Evolution Review and Feasibility As-
sessment. Armor, July-August, pp. 7-13.

Suri, N., Bradshaw, J.M., Carvalho, M., Cowin, T., Breedy, M.,
Groth, P., and Saavedra, R. Agile Computing: Bridging the Gap
between Grid Computing and Ad-hoc Peer-to-Peer Resource
Sharing. In Proceedings of the 3rd IEEE/ACM International
Symposium on Cluster Computing and the Grid (CCGrid 2003).

Suri, N., Bradshaw, J.M., Breedy, M.R., Groth, P.T., Hill, G.A.,
and Jeffers, R. Strong Mobility and Fine-Grained Resource Con-
trol in NOMADS. In Proceedings of the 2nd International Sym-
posium on Agents Systems and Applications and the 4th Interna-
tional Symposium on Mobile Agents (ASA/MA 2000). Springer-
Verlag; 2000.

Suri, N., Carvalho, M., Bradshaw, J., Breedy, M., Cowin, T.,
Groth, P., Saavedra, R., and Uszok, A. Enforcement of commu-

nications policies in software agent systems through mobile
code. In Proceedings of the 4th IEEE International Workshop on
Policies for Distributed Systems and Networks, page 247. IEEE
Computer Society, 2003.
Suri, N., Bradshaw, J., Carvalho, M., Breedy, M., Cowin, T.,
Saavedra, R., Kulkarni, S. Applying Agile Computing to Sup-
port Efficient and Policy-Controlled Sensor Information Feeds in
the Army Future Combat Systems Environment. In Proceedings
of the U.S. Army 2003 Annual Collaborative Technology Sympo-
siu. 2003

Tschudin, Ch. and Ossipov, E., Estimating the Ad Hoc Horizon
for TCP over IEEE 802.11 Networks, In Proceedings of the
Third Annual Mediterranean Ad Hoc Networking Workshop,
Bodrum, Turkey, June 2004.

