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ABSTRACT 

In this paper we introduce the FlexFeed framework in the 
context of military combat operations. FlexFeed realizes 
the notion of Agile Computing for streaming data commu-
nications and implements a flexible, robust and efficient 
publish/subscribe infrastructure for dynamic ad hoc envi-
ronments under resource and policy constraints. The 
framework uses mobile software agents for underlying 
configuration and policy enforcement. The paper illus-
trates the effectiveness of the framework with quantitative 
experiments over simulated scenarios.   

INTRODUCTION 

Dependable communication capabilities are amongst the 
most important technical requirements for mission success 
in military operations. Complex missions involving coali-
tion forces, robotic support units, remote sensor beds and 
autonomous vehicles will require underlying communica-
tion infrastructures that are more flexible, efficient, and 
robust in order successfully operate in the face of enemy 
attacks. 
 
Most communications between peers in the battlefield are 
either to exchange state and environmental information or 
to relay command and control messages. State information 
includes, for instance, relative position of troops and vehi-
cles (enemy and friendly), sensor data from unmanned ve-
hicles or sensor beds, situation data, etc. This type of data 
is often transmitted as streams of arbitrary durations, such 
as video-feeds from a camera sensor or continuous GPS 
position data from moving vehicles or troops. 
 
Furthermore, the communications infrastructure must ad-
just to changes in overall mission goals and operations 
tempo. During monitoring and recognition missions, con-
serving power might be the primary objective function to 
extend the life of network resources. However, as engage-
ment takes place, the communications infrastructure may 
need to quickly shift into a high performance mode to ef-
fectively support and optimize the kill chain as the primary 
objective. 
 
In this paper we present FlexFeed, a mobile-agent based 
communications framework, applied to the battlefield sce-

nario. Our proposal leverages from years of research in the 
fields of mobile ad hoc networks and intelligent software 
agents to build an efficient, self-configurable, and self-
healing communications network for these types of envi-
ronments. 
 
After an introductory description of the environment and 
system requirements, we will discuss the related work in 
this area and the concepts proposed in FlexFeed. A brief 
description of the implementation details of framework 
will be then followed by case studies, presented and ex-
perimentally evaluated on a simulated network to illustrate 
FlexFeed capabilities. 
 

COMMUNICATIONS IN THE BATTLEFIELD 

As part of the Army’s Objective Force to be deployed 
within the next decade, Future Combat Systems (FCS) is 
envisioned as a system of systems that will integrate sev-
eral lightweight, highly mobile components including new 
generations of manned and unmanned military vehicles 
(Sharoni & Bacon, 1997; Pike, J., 2003). These light vehi-
cles will partially replace heavy armored slower vehicles 
in order to bring unprecedented levels of dynamism and 
agility to the combat theater. 

Furthermore, FCS operations will heavily rely on informa-
tion superiority to quickly take control of the battlefield 
and appropriately react to enemy movements and changes 
of strategy. This capability depends on the notion of uni-
versal tasking, where resources and information are di-
rectly available at any time to the edge warriors and com-
manders in the field. 

An enabling key-capability for this vision is an efficient 
and adaptive communications infrastructure to support and 
extend edge warrior capabilities and provide access to 
critical information at any time, while at the same time 
ensuring optimal resource utilization and security both at 
the infrastructure and information levels. Figure 1 shows a 
schematic view of some of the elements involved in these 
types of operations.  

In general, a communications model capable of supporting 
FCS requirements is an ad-hoc publish/subscribe model. 
Soldiers and systems in the network will subscribe to sen-
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sor data and state information to plan and coordinate local 
tasks in response to high level instructions from the com-
mand and control center. 

Sensor BedSoldiers  
Figure 1 – Communications infrastructure in the battlefield 

Based on FCS requirements, an appropriate data commu-
nications framework must be capable of satisfying the fol-
lowing requirements: 

a) Ad hoc: In most cases, as illustrated in figure 1, net-
works between nodes will be ad hoc, formed by proximity 
during the operation itself. The communications infrastruc-
ture must not depend on pre-established infrastructural 
components or centralized management stations. This ca-
pability is important both from a scalability and robustness 
perspective, eliminating (or mitigating) single points of 
failure in the network. 

b) Efficiency: Communications and computational re-
sources in the battlefield are expected to be limited and 
often times, battery operated. Ad hoc sensor beds and 
small autonomous vehicles deployed during the operation 
will have a life-span strictly limited by their battery life. In 
most cases, it is imperative that the communications infra-
structure operate efficiently across different types of appli-
cations and scenarios to extend the life of network re-
sources. 

c) Heterogeneity: Systems in the battlefield tend vary 
greatly in terms of computation and communications ca-
pabilities. Lightweight attack vehicles, small robotic units, 
and unmanned aerial vehicles will all have different de-
grees of computation and sensing capabilities and access to 
the wireless environment. 

d) Application-aware Capabilities: A common limitation in 
most communications frameworks currently available is 
the lack of interaction between applications and the under-
lying data transmission protocols. This limitation is often 
accepted in lieu of the benefit of layer isolation and in 
making protocols interchangeable. For improved effi-
ciency however, the communications infrastructure can 
and should benefit from data-aware protocols at all levels.  

d) Robustness to External Attacks: The communications 
infrastructure must be able to resist to both physical and 
network attacks. Degradation with loss of communication 
resources must be graceful and most importantly, must be 
selective. Special types of operations and tasks that are 
critical to the overall operation must have precedence over 
less relevant tasks. This requirement goes beyond the con-

ventional notion of quality of service in data networks. 
Ideally, the framework must be aware of the importance of 
data transmission not only in terms of data-type, source, 
and destination, but also in terms of high level goals and 
mission OPTEMPO in order to make prioritization deci-
sions. 

c) Robustness to Environmental Changes: The environ-
mental conditions, topology, and size of the network will 
vary significantly. In the battlefield, nodes can arbitrarily 
join and leave the network. Nodes can be physically de-
stroyed or made unavailable at any time. An appropriate 
communications infrastructure must be able to cope with 
these changes quickly and efficiently. 

e) Reactive and Proactive OPTEMPO Adaptability: The 
framework must also be able to properly adapt to change 
in overall mission goals or situation in the battlefield. For 
instance, changes in operational tempo can be either 
pushed to or autonomously detected by framework nodes, 
which should automatically result in changes in the com-
munications behavior. For instance, when precursors of 
engagement are identified, the framework, in accordance 
with global policies, must autonomously switch from a 
power efficient mode a low latency, high performance 
mode to support combat systems. 

f) Proactive Resource Manipulation for Survivability and 
Improved Efficiency: This notion was initially proposed 
within the context of Agile Computing (Suri, 2002). It re-
fers to the notion of granting the framework with the abil-
ity to proactively manipulate physical (or logical) re-
sources in the framework in order to recover critical 
connectivity segments or to significantly improve per-
formance.  

g) High Level Policies for Monitoring and Control: From a 
human perspective, monitoring and control of such com-
plex systems is a very difficult task. An appropriate frame-
work for these types of systems must support interfaces to 
policy infrastructures that would allow humans to easily 
define and establish constraints and obligations to regulate 
the overall operation of the framework. From an optimiza-
tion perspective, most policies would ultimately result in 
low level constraints taken into account by the framework 
when deciding about resource allocation. 

In the last few years, a number of research proposals have 
been introduced to address some of these requirements. 
Common to most of them is the notion of a customizable 
publish/subscribe communications mechanism capable to 
efficiently support messaging and data streaming.  

RELATED WORK 

Conventional topic-based publish/subscribe systems such 
as such as Vitria (Skeen, 1998), TPS (Eugster et al., 2001) 
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and JORAM (Maistre, 2003) leveraged form multicast pro-
tocols and the assumption of a clear hierarchy on data and 
events to build efficient multicast groups for topic-based 
data distribution. Multicast based protocols often provide 
an efficient solution to the problem but they assume that 
only nodes participating in the multicast group would 
share the data for distribution (at the level of the multicast 
tree). Furthermore, most multicast protocols assume data 
(or events) to be strictly hierarchical and processing capa-
bilities for data transformation within the hierarchy must 
be available a priori at all nodes. 

A number of gossip-based (or epidemic) protocols were 
also proposed in the same context (Lin and Marzullo, 
1999; Ganesh et al., 2001; Eugster et al., 2003). In general, 
these are efficient and scalable protocols but assume no 
data hierarchy and often make no attempt for cost or con-
straint optimization based on data stream aggregation and 
filtering. 

Multicast protocols specifically designed for peer-to-peer 
networks such Scribe (Rowstron et al., 2001) and HiCan 
(Ratnasamy et al., 2001) came to solve scalability issues in 
addressing and group coordination. They too, however, 
assumed that only nodes subscribed to the multicast group 
would participate in the multicast tree and that data proc-
essing capabilities are available at all nodes a priori. 

Alternatives to the multicast option were also proposed at 
the level of unicast routing in the form of data-aware cus-
tomized ad hoc routing protocols. An important example 
of these types of data-centric routing protocols is Directed 
Diffusion (Intanagonwiwat et al. 2000). The Directed Dif-
fusion protocol proposes a highly scalable data-aware de-
centralized routing algorithm. The protocol supports the 
creation of data distribution trees including nodes that are 
not directly subscribing for the data. The protocol, how-
ever, also assumes that data transformation capabilities are 
available a priori at each node, which is not a realistic as-
sumption for the types of environments envisioned in FCS.  

More recently, Baehni et al. (2004) proposed a data-aware 
multicast protocol (daMulticast) for peer-to-peer networks. 
The approach leveraged from some of the data-centric 
techniques for data description and group membership, 
significantly improving reliability and at the same time 
reducing the memory complexity involved in maintaining 
group membership at each node.  

In the most part, the approaches share the notion of using 
data-aware techniques for resource or performance optimi-
zation. The problem, however, is that data-aware frame-
works are usually highly customized to a set of applica-
tions or data types, often requiring significant time and 
effort to support new scenarios or capabilities. In many 
cases, such changes are not even possible, as hardware 

might have been already deployed or might be under ex-
ternal administrative control, like in the case of combat or 
Military Operations Other than War (MOOTW) coalition 
operations. 

THE FLEXFEED FRAMEWORK 

In this paper we propose FlexFeed, a mobile-agent based 
communications framework designed to support highly 
customized data streams in mobile ad-hoc network envi-
ronments under policy and resource constraints. 

The concepts implemented in FlexFeed were first intro-
duced by Carvalho et al. (2002). The fundamental ideas of 
the framework are based on the concepts of Agile Comput-
ing (Suri, 2002) where network and system resources are 
opportunistically exploited to transparently support appli-
cation requests in a manner that is efficient, robust, and 
adaptable to changes in the environment.  

The FlexFeed framework is essentially based on three core 
concepts: a) Opportunistic resource exploitation; b) Flexi-
bility and run time self-configuration via on-demand code 
and process migration; and c) In-stream data processing. In 
the framework, these capabilities are combined and ex-
tended to address the requirements identified in the types 
of environments expected in FCS.  

The framework uses data-aware mobile agents to better 
customize multicast trees and to provide in-stream data 
processing (i.e. to take advantage of the multi-hop nature 
of the communications path in these types of environments 
to distribute computation data processing loads). Special-
ized agents can be injected in the framework by authorized 
parties at run-time, allowing for great flexibility and sup-
port of highly specialized data streams. The overall behav-
ior of the framework is regulated by high level policies 
defined, verified, and distributed by an integrated policy 
infrastructure designed for multi-agent systems. A proof-
of-concept version of the FlexFeed framework was devel-
oped and tested both in simulated and physical environ-
ments. The framework was also demonstrated in actual 
live exercises conducted by the Army (ARL QL2, 2004) 
and the demonstrations for the Navy (ONR NAIMT, 
2004). In the subsequent items, we will briefly discuss the 
implementation details of the framework, followed by ex-
perimental simulation results of illustrative case studies. 
 

THE FRAMEWORK COMPONENTS 

The FlexFeed framework is a distributed application-level 
middleware that is installed in all participating systems. 
The middleware provides an API that allows applications 
to specify services or requests for data streaming. 
 
At the implementation level, the framework combines a 
mobile agent system with resource coordination and allo-
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cation mechanism and a policy infrastructure to determine 
and configure, at runtime, efficient data distribution trees 
between applications. 
 
The mobile agent system gives the framework the ability 
to move code and computation between nodes to enable, 
on demand, new data-specific capabilities in nodes that 
will participate in the data distribution tree. Process migra-
tion is used to improve survivability and system perform-
ance. Although FlexFeed can be easily configured to work 
with different agent systems, our proof of concept imple-
mentation was developed on top of the NOMADS agent 
system (Suri et al., 2000; Groth and Suri, 2000). 
 
NOMADS is a mobile agent system for Java-based agents. 
It provides two implementations: Oasis and Spring. Oasis 
incorporates a custom Java-compatible Virtual Machine 
(named Aroma) whereas Spring is a pure Java implemen-
tation. The Aroma VM is a clean-room VM designed to 
provide the enhanced capabilities of execution state cap-
ture and resource control.  
 
The resource coordination component (referred to in this 
paper as the ‘coordinator’) is the intelligent part of the 
framework. It is responsible for realizing the notion of ag-
ile computing in the context of data streaming. The ‘coor-
dinator’ can be implemented as a distributed process or as 
a centralized component operating in one of the nodes of 
the framework. All experiments and examples shown in 
this paper are based on one specific implementation of a 
centralized coordination algorithm (ULM) but decentral-
ized alternatives are also available.  
 
The policy infrastructure is independent of the framework. 
The goal of the policy framework is to provide a high level 
interface to the system in order to allow both human opera-
tors and applications to establish, query and modify high 
level requirements and constraints that will regulate how 
the framework should operate. Furthermore, the policy 
infrastructure is also responsible for validation, verifica-
tion, disambiguation, and distribution of policies through-
out the system. Policies can also be used to regulate and 
constrain the autonomous behavior of the framework, pro-
viding bounds for self-adjustments to operation tempo and 
to the proactive manipulation of resources. Currently, 
FlexFeed uses KAoS (Bradshaw et al., 1997; Bradshaw et 
al. 2002; Bradshaw et al., 2003) as its policy framework. 
 
Access to these components is available at each node 
through a common API. In order to participate in the 
framework, applications at each node can obtain an in-
stance of the FlexFeedManager Component (Figure 2). 
The FlexFeedManager provides the access API to the 

framework and allows applications to register, advertise 
capabilities, and request data streams from other resources.  
 

Spring

Host A

Spring

FlexFeedManager

Soldier(C)

Host B

FlexFeedManager

Sensor (S)

request

data-feedrequest request

data-feeddata-feed

 
Figure 2 – The FlexFeed Framework. 

 

Transparent to the applications, FlexFeedManagers at each 
node communicate in a peer-to-peer fashion to exchange 
state and plan resource utilization. When a client places a 
request for a data stream from a sensor as illustrated in 
figure 2, it specifies the source of the data and the re-
quirements for the data stream (for example, resolution 
and frame rate in the case of a video stream). 

That information, along with resource availability informa-
tion from local nodes, is used to build the data distribution 
tree from source to client. If using a centralized coordina-
tor, the planning is done at one single location using global 
state data. Decentralized coordination algorithms rely on 
peer to peer negotiation between FlexFeedManagers and 
use only local state for planning. 

The client is allowed to specify any type of data, granted 
that it provides to the framework the necessary information 
for cost calculation and the code (in the form of mobile 
agents) necessary to manipulate (e.g. aggregation and fil-
tering) the data for optimization. Because FlexFeed sup-
ports on-demand code deployment, trusted applications 
can provide new components to the framework at run time, 
enabling the support of previously unknown data types.  

 
Figure 3 – A Complex Data Request 

The client can also provide complex data processing re-
quests such as the one illustrated in figure 3. In that exam-
ple, the client is specifying (through a graph structure) two 
distinct data sources that should be merged with a specific 
(client-provided) processing element (FS) and then, dis-
criminatively delivered to two sink nodes. Details about 
the data types and processing elements are embedded in 
the graph node and edge components, using a pre-defined 
data structure provided by the framework. 

The FlexFeed framework will load the appropriate soft-
ware components specified by the client (either from the 
client host of from a common codebase) and will identify 
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the network resources necessary to support the request. 
The location of the logical fusion element (FS) can be at 
any intermediate node between the source and sink ele-
ments, based on resource availability, policies, and overall 
costs for computation and data transmission.  

After mapping the request to the physical network, the 
framework will monitor environmental changes (such as 
significant variations in resource availability or link fail-
ure) to transparently recalculate and adjust the data tree 
until the request is terminated by the client.  

CASE STUDIES AND EXPERIMENTAL RESULTS 

The framework was tested in a simulated network where 
packet drops and bandwidth constraints could be carefully 
controlled. The goal of these tests was to demonstrate the 
effectiveness of on demand configuration of data-aware 
streaming in the improvement of data quality and reduc-
tion of jitter. These metrics are highly relevant to applica-
tions such as the remote control of unmanned vehicles.  

The overhead of the framework was also measure in terms 
of induced latency in the stream. The computational over-
head for running intermediate processing elements and 
filters was disregarded and the coordination mechanism 
used in the experiments was the centralized ULM (Car-
valho, 2005) algorithm, based on an iterative version of 
Dijkstra’s shortest path algorithm applied in localized parts 
of the graph. 

The experiments were conducted on a 100baseT network 
with full connectivity. Bandwidth limitations between 
UAV and other nodes were simulated on a fixed wired 
network. Figure 4 provides a schematic view of the test 
networks.  

S1

S2

T2

UAV

 
Figure 4 – Schematic illustration of the environment con-

sidered for experiments 

In this configuration, nodes ‘S1’ and ‘S2’ represent two 
dismounted soldiers in direct communications range with 
each other and with a tank nearby ‘T2’. All nodes are in 
communications range with an unmanned aerial vehicle 
‘UAV’ on a fixed flying pattern over enemy territory.  

The bandwidth available from the UAV to the remaining 
nodes is variable and can be severely constrained at differ-
ent times. Our experimental procedure explores different 

operational scenarios on top of this configuration. The goal 
is to quantitatively illustrate how the FlexFeed framework 
improves data communications by reducing delays be-
tween image updates and the variance between packet ar-
rival times (jitter). In our experimental setup, each node is 
represented by a separate laptop. The bandwidth limita-
tions on the UAV are simulated by a gateway running 
NISTNet (Carson, 2002). Figure 5 shows the experimental 
setup designed to simulate the environment illustrated in 
figure 1.  

S1

S2

T2

UAV
NISTNET

 
Figure 5 – Experimental setup 

The centralized coordination node (not shown in figure 5) 
receives state information such as CPU and bandwidth 
availability from each of the 4 nodes involved in the test. 
The frequency of updates is proportional to the rate of 
change in these metrics. When a client makes a request for 
a data stream, it specifies the source node (UAV), frame 
rate, and resolution. The coordinator node will receive the 
request and will handle it appropriately, building a data 
distribution tree from the source, based on current global 
system state. 

Optimizing Bandwidth Utilization  

In the first scenario, soldier ‘S1’ temporarily assumes con-
trol of the UAV, taking it out of the flying pattern and 
closer to enemy positions. Unaware of the fact that the ve-
hicle is now under remote control, soldier ‘S2’ also re-
quests a video stream from the UAV’s camera. In this ex-
ample, both video streams were requested at a 320x240 
resolution with 3 frames per second.  

Under unconstrained conditions, the combined streams 
require the UAV to send approximately 50 KBps of data. 
In the initial condition the bandwidth limitation is 100 
KBps (equivalent to unconstrained bandwidth in this ex-
ample) so there are no packet drops and the average delay 
between images is 271 milliseconds, which represents a 
stream of approximately 2.69 frames per second. Note that 
the resulting frame-rate, even under unconstrained band-
width conditions, only approximates the requested frame-
rate. This is due to the delays involved in actual image 
capture (which is camera dependent), compression, and 
serialization. 

The bandwidth available from the UAV is then progres-
sively reduced to a maximum of 40 KBps, 30 KBps, and 
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then 24 KBps. At each step, the average delay between 
images is measure at each client ‘S1’ and ‘S2’. 

When the coordinator is inactive, that is, when the frame-
work is not making any attempt to optimize data streams, 
the sensor (UAV) sends a unicast stream to each of the 
clients. Both streams will compete for the limited band-
width and the delays at each client increase significantly 
with the reduction in bandwidth availability. These results 
are shown in figure 6, with their 95% confidence error 
margins. 

Client A Client B

427 6±
1230 193±
2978 690±

5354 1920±

430 8±
570 23±

4760 5114±
8883 5364±

100 KBps
40 KBps
30 KBps
24 KBps

T2

S2

S1

UAV

 
Figure 6 – Effects of bandwidth reduction without data 
stream coordination. 

In this example, as the bandwidth availability decreases, 
the delays quickly increase to the point where critical 
tasks, such as the remote control of the UAV, are com-
pletely compromised. A minimum frame-rate of 2 fps is 
required1, in this example, to safely navigate the UAV so it 
is clear that even small constraints in bandwidth availabil-
ity can compromise this task. Furthermore, we can verify 
the well known bandwidth stealing behavior between cli-
ents, where bandwidth is not equally shared between 
streams. This behavior has been previously reported in IP 
networks (Tschudin and Ossipov, 2004) and could com-
promise critical tasks such as the control of the UAV. 

100 KBps
40 KBps
30 KBps
24 KBps

Client A Client B

382 4±
382 4±
384 9±

514 20±

401 9±
383 6±
381 9±

514 20±

T2

S2

S1

UAV

 
Figure 4 – Data distribution tree created by FlexFeed 

When the FlexFeed coordinator is enabled, the framework 
identifies the stream requests and attempts to globally op-
timize data distribution. In this specific case, the coordina-
tor (which, is a centralized process) determines that both 
streams are similar (in fact, equal) and the overall band-
width utilization can be reduced with a multicast-like data 
distribution tree. The framework opportunistically identi-

                                                 
1 Although it is commonly accepted that a minimum of four frames per 

second is necessary to remotely operate robotic vehicles, for illustra-
tion purposes in this example, the minimum requirement for tele-
operation is assumed to be two frames per second. 

fies node ‘T2’ as a potential intermediate processing ele-
ment and builds the distribution tree illustrated in figure 4. 

Under the same bandwidth constraints, the framework en-
sures that the lowest capacity link (from the UAV) is not 
saturated and delays between images are kept within rea-
sonable bounds.  

Furthermore, the variance in delay (jitter) is significantly 
smaller, ensuring that critical processes maintain minimum 
levels of throughput and quality of service. 

FlexFeed Overhead  

The overhead of framework basically falls into two main 
categories: a) the number of additional control messages 
involved on sharing state between nodes (or between 
nodes and the centralized coordinator) and b) the time re-
quired to determine, locate, and configure the nodes that 
will participate in the data stream. Both factors are highly 
dependent on the type of coordination mechanism used in 
the framework (centralized, zone-based, or local), the com-
plexity of the data, the scale of the network, its level of 
connectivity, and the frequency of state updates.   

In our example, the network topology is static and varia-
tions in resource availability are small so our attention is 
focused primarily on the delays (latency) caused by the 
centralized coordination algorithm. Table 1 shows the av-
erage delays and their 95% confidence error margins ob-
served in each test, both with and without the coordinator. 
The delays were measured as the average between the time 
of the second client ‘S2’ request and the time when the 
first image is delivered to that client. 

 No Coordinator Coordinator 

100 KBps 978 ± 37 1845 ± 85 

40 KBps 1175 ± 126 2187 ± 95 

30 KBps 1184 ± 571 2330 ± 180 

24 KBps 1942 ± 310 2418 ± 204 

Table 1 – Average delays for starting the stream 

When the coordinator is present (second column), there is 
an up-front cost in terms of latency that is due to the time 
spend in identifying and configuring network resources for 
data distribution. When the coordinator is not present, the 
response to the data request is relatively fast at first but the 
delays increase as the bandwidth is reduced. This is basi-
cally due to the fact that initial images are being lost on the 
saturated channel when the coordinator is not present. 

FlexFeed versus Multicast 

The data distribution tree presented in this example resem-
bles a data multicast tree, often obtained with conventional 
data multicast algorithms. As previously noted, FlexFeed 
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goes beyond conventional and data-aware multicast ap-
proaches by building a tree that include nodes that are not 
necessarily part of the multicast group (node T2 in this 
case). These nodes are opportunistically discovered and 
configured, at runtime by the framework, based on its cur-
rent resource availability, role in the network, and system 
policies. 

Furthermore, the configuration of node T2 can be highly 
data-dependent and arbitrarily complex. In these examples, 
the intermediate node was use merely as a splitting point 
for the data distribution tree. It could also have received 
customized code to perform in-stream data transformation 
or specialized filtering. 

Consider the case where the request place by soldier ‘S2’ 
was for a lower resolution video stream from the same 
source. Multicast algorithms would often regard this as an 
independent request or would have assumed that one of the 
nodes in the multicast group would be able to reduce the 
resolution of the stream to include the new request in the 
data hierarchy. Data-centric protocol like Directed Diffu-
sion would also depend on an intermediate node’s a priori 
capabilities to construct the low resolution data from the 
high resolution stream. 

In FlexFeed, the request placed by soldier ‘S2’ can specify 
references to data-specific code that will be installed, on 
demand, on node ‘T2’ to act as a processing element. The 
code would be installed only in the necessary nodes (as 
determined by the coordination algorithms) and would be 
removed when no longer necessary.  

Another extension of the same capability is the transparent 
enforcement of information release policies. In this case, 
upon S2’s data request, FlexFeed would query the policy 
framework for constraints or obligations involving the re-
quest. Consider, for example, that policies were previously 
defined to constrain unrestricted access from S2 to that 
specific data source. In that case the framework will, 
transparent to node ‘S2’, identify an intermediate node for 
policy enforcement and will deploy the customized data 
filters (specified as part of the policy) to ensure compli-
ance with the specified requirements. This feature of Flex-
Fleed has been extensively demonstrated by (Suri, Brad-
shaw et al, 2003; Suri, Carvalho et al, 2003) in multiple 
simulations and real life exercises. 

CONCLUSIONS AND FUTURE WORK 

In this paper we have introduced the FlexFeed framework 
in the context of military combat operations. The concept 
proposed in FlexFeed goes beyond current data-centric 
routing approaches and data-aware multicast. It realizes 
the notion of agile computing in the context of data com-
munications and offers the basis for a truly customizable 

middleware for data communications in extreme environ-
ments. 

The framework is currently implemented and has been 
tested in several small scale exercises including soldiers 
operating in conjunction with robotic units and remote sys-
tems. The framework currently relies on a centralized co-
ordination algorithm for resource allocation. We are cur-
rently developing fully decentralized (and zone-based) 
algorithms to improve scalability, robustness, and per-
formance.  
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