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Abstract—We examine how the design of the 

Transmission Control Protocol (TCP) implicitly presumes 

a limited range of path delays and distances between 

communicating endpoints. We show that TCP is less suited 

to larger delays due to the interaction of various timers 

present in TCP implementations that limit performance 

and, eventually, the ability to communicate at all as 

distances increase. The resulting performance and protocol 

radius metrics that we establish by simulation indicate how 

the TCP protocol performs with increasing distance radius 

between two communicating nodes, and show the 

boundaries where the protocol undergoes visible 

performance changes. This allows us to assess the 

suitability of TCP for long-delay communication, including 

for deep-space links. 

 
Index Terms—Transmission Control Protocol, TCP, Delay 

Tolerant Networking, DTN 

I. INTRODUCTION 

 Successful electrical communication between two points 

requires that a signal be received and decoded. A link budget 

can be used to determine whether this can be achieved by 

adding up all the gains and losses accrued in the physical 

channel between sender and receiver. The receiver has a 

dynamic range in which signals are received, demodulated, 

and decoded; if the sender is too far away, its signal will not 

be received and decoded correctly, as the weak signal will lie 

below the receiver’s noise floor, and be swamped by noise in 

the channel. Conversely, if the sender is much closer than its 

power output is designed for, its signal can exceed the 

receiver’s dynamic range and oversaturate the receiver, as the 

expected free-space attenuation component of the link budget 

has decreased. 

By analogy, for communications using networking 

protocols above the physical layer, we must also consider the 

delay budget between two communicating points. This delay 

budget is the sum of separate delays. These can include: 

a. propagation delay between endpoints, governed by speed 

of light in the medium. 
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b. channelisation/serialisation delay; time between 

transmitting the first and last bit of a frame. This is 

significant at low data rates, but negligible at high data 

rates. As the link rate increases this tends towards zero. 

c. medium access delays dealing with contention for a shared 

medium. Here, we assume point-to-point serial 

communications, and neglect complex Medium Access 

Control (MAC). Shared communication has not been used 

beyond geostationary orbit. 

d. processing/queuing/endhost delays, which may be 

deliberately inserted to minimise resource use on the 

network or in the endhost. For TCP, mechanisms such as 

delayed acknowledgments [1] and Nagle’s algorithm [2] 

can be significant in affecting two-way communications. 

e. Codec delays. Minimising the other delay components 

permits more time for advanced high-complexity codecs to 

compress video or audio efficiently. 

It is necessary to sum these time delays to see if the total 

delay is suitable for logical communication to take place, just 

as we sum decibels in the link budget to see if the physical 

signal can be heard by the endpoints. 

Many medium access and transport-layer protocols are 

designed to perform within a certain delay range between the 

two communicating points. At increased distances and larger 

delays between communicating nodes, performance of the 

examined protocol can be expected to degrade, and protocol 

mechanisms can even cause communications using a protocol 

to fail at sufficiently large distances and time delays. 

Conversely, using a protocol between points with much 

smaller delays than expected for the protocol can result in 

exchanges being dominated by protocol transaction overheads 

that produce degraded performance when compared to 

alternative protocols more suited for the smaller delay times. 

For example, consider TCP, the Internet’s Transmission 

Control Protocol. TCP is widely recognised to perform poorly 

across geostationary satellite links of around half a second of 

path Round Trip Time (RTT) [3]. This is due to TCP’s 

exponentially-increasing probing of path capacity in slow 

start, and its assumption about fair use of network resources – 

that every packet lost is due to network congestion, and that 

this can be addressed by slowing TCP further. Similarly, TCP 

has high delay overhead for fast parallel computers, where 

interprocess communications can be done using something 

that can use dedicated communications capacity without the 

need to be as cautious or slow to build to high speeds as TCP. 

These give us a very rough idea of the range of delays and 

distances where TCP communication performs sufficiently 
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well to be useful.  

This paper examines the delays and distances more 

precisely, in order to characterise TCP and its performance 

limits more accurately. 

II. PERFORMANCE AND PROTOCOL RADII 

We call the limit within which a protocol works at the high 

performance for which it was designed its high performance 

radius. An endpoint using the protocol will be able to 

communicate well by direct line of sight with another endpoint 

within its performance radius.  

The distance beyond which a protocol can no longer work 

or be used to successfully communicate information, because 

set timers within the protocol cause it to fail, is the protocol’s 

limiting protocol radius. This limit forms a larger ‘bubble’ 

around the endpoint that encompasses the high performance 

radius, and other performance radii where protocol timers 

have caused changes in the performance of the protocol, rather 

like the outer skin and concentric inner layers of an onion. 

For wireless communication, this protocol radius can be 

thought of as analogous to the Schwarzchild radius – the 

distance beyond which information cannot escape from a 

black hole. This bubble around an endpoint indicates the range 

within which it can usefully exchange information with 

another endpoint using the protocol: the protocol’s event 

horizon, or a very different form of ‘networking black hole’ 

for outgoing traffic. These bubbles will fall well within the 

boundaries of the ever-increasing Minkowski light cone that 

indicates the radiation of signal from an endpoint. For paths 

via a relay point, the limiting shape of the bubble is an 

ellipsoid. These radii are shown [Fig. 1]. 

For convenience, we will define a distance between 

communicating nodes in seconds of delay needed to travel that 

distance. This simplifies calculations mapping the protocol 

timers and their delay limits to path distances. Thus, for 

wireless communications between two points in the vacuum of 

space communicating at light speed c, we can translate the 

seconds of path delay directly into light-seconds of distance, 

assuming that the link bitrate is high enough that the 

serialisation delay of the packet can be neglected, and ignoring 

MAC timers. For other media where light travels more slowly, 

we can compute the distance by dividing the delay by the 

refractive index of the medium. 

III. EXAMINATION OF TCP’S RADII 

A. Dependence on IP 

TCP segments are carried in IP packets, so it is worth 

examining IP itself for limiting factors. IP’s Time-To-Live 

(TTL) counter was originally specified to measure time in 

seconds or hops [4]. TTL later became just a hop count, as 

decrementing the TTL counter by one at each hop was easier 

to compute. As TTL is stored in an octet, an IP packet can 

traverse a maximum of 255 hops before the counter hits zero 

and demands that the packet be deleted without forwarding. 

However, the initial value is rarely set this high by the sender 

even for multicast thresholds, and is more likely to be 32. 

Entire protocol fails hard. Beyond this 

distance, communication cannot take 

place using this protocol.

A number of possible step changes 

in performance due to timers in the 

protocol state machine becoming 

limiting factors. 

protocol radius R

2R >= usable RTT

performance 

radius r

Volume within performance 

radius r where protocol will 

work entirely as designed

Figure shows great-circle 
cross-section of protocol 

radius sphere or ‘bubble’.
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Nodes able to communicate at highest performance range for which 

protocol was designed. Connection is established. (Distance between 

nodes can be slowly increased for new simulation runs to establish radii).  

Nodes unable to communicate via protocol – beyond protocol radius distance.
Connection is not established. (Simulations no longer need to be run.)  

Assume direct line of sight is blocked by a body, requiring a 
simple relay node. The bubble becomes an ellipsoid, where
a + b <= protocol radius R.

a b

 
Fig. 1. Depictions of protocol and performance radii for 

free-space communication  
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TTL places an upper limit on the number of links that can 

be concatenated for end-to-end communication, but this limit 

is rarely encountered, so we can ignore it while focusing on 

total path delay. Although there are many timers involved in 

underlying MAC layers setting up an IP link, there are no 

timers in IP as such. IP does have other limitations – lack of 

support for mobility in a design intended for fixed, wired links 

being one – but these are outside the scope of this paper. We 

can move on to examine TCP with a clear conscience. 

B. Test scenarios: the simulation environments 

We examined the performance of TCP by increasing path 

delay between nodes in the network simulator ns 2.30 [5] and 

in Opnet 11.5. We examined TCP Reno, TCP SACK and 

timestamps. We relied to a large extent on given simulator 

defaults, as we recognise that implementation defaults can 

vary widely, and seeing common behaviour across a wide 

range of conditions (including differing simulation 

environments) leads to insights. In both simulators, a single 

reliable serial link was used to remove the effects of errors and 

of MAC protocol timers. Unidirectional HDLC/Frame Relay 

serial links carrying IP are in use for wireless point-to-point 

space communications, so a serial link is not unrealistic [6, 

7].This link was set at a high enough rate to remove 

serialisation artefacts discussed earlier. Channel-induced 

errors were eliminated to allow us to focus solely on TCP’s 

own performance.  

Using the default 16-bit pointer to its fullest with a 64K 

window makes sense with long delays, so that was tested 

alongside default buffer sizes. In the interests of keeping 

simulations tractable, we did not examine large windows 

extensions to TCP. TCP link utilization is ultimately limited 

by its buffer sizes; a large link rate ensures that that rate does 

not affect simulations, and that TCP is limited by its windows. 

The initial retransmission timeout (RTO) value was 3 seconds, 

minimum RTO 1s and maximum RTO 64s. Timer granularity 

was the default in the simulators: a fairly coarse-grained 0.5s 

in Opnet, and 0.1s in ns. FTP file transfers were used. 

C. TCP’s protocol radius - the SYN/ACK handshake 

TCP was initially said to have a maximum segment lifetime 

of two minutes, with a global timeout of five minutes to abort 

the connection if no data was delivered [8], although this was 

not widely adopted in implementations. A two-minute 

segment and packet lifetime, mapped to a four-minute RTT, 

would mean that nodes attempting to communicate across a 

path longer than two minutes in length would fail to talk. 

There is no formal upper bound on RTT, but an RTT of 

greater than one minute is claimed to be unlikely [9]. 

TCP’s tolerance to delay is governed by its initial 

retransmission timeout (RTO) value, and by the timers used to 

open a connection in the three-way SYN/ACK exchange 

between sender and receiver. If this exchange is not 

successfully completed, data transfer cannot even begin. 

When opening a TCP connection, the sender will send a 

SYN packet for the receiver to acknowledge with a 

SYN/ACK, before the sender sends its own SYN/ACK in a 

three-way handshake.  

The sender waits for a reply to its initial SYN, but does not 

wait indefinitely. After the initial RTO time of three seconds 

has passed, another SYN will be sent – and the sender will 

then double the time it waits to six seconds. If this is not 

replied to, another SYN is sent after six seconds, and the 

sender doubles its waiting time again, leading to SYNs at 0, 3, 

6, 12, 24, ... second intervals, or 0, 3, 9, 21, 45, ... s after the 

first SYN. So, for long-delay paths, more than one initial SYN 

is sent, and a reply to the first SYN is finally received by the 

sender in the window of a subsequent SYN that is still in 

transit to the receiver. This is shown in Figure 2. This patient 

doubling and waiting for an initial response could go on 

indefinitely, but TCP implementations give up and report an 

error to the application eventually. The inefficiencies of TCP’s 

timer mechanisms have long been noted [10]. 

In Opnet simulations, a TCP sender and receiver were 

unable to establish a connection when the distance between 

the two was greater than 22.5 seconds, or a path RTT of 45 

seconds. 45 seconds is the sum of the intervals 0+3+6+12+24 

seconds, resulting from the Opnet TCP implementation 

attempting to open the connection five times before giving up 

because no response has been received. If we consider this for 

line of sight, 22.5 light seconds is enough to include all the 

Earth/Moon Lagrange points, but is a smaller upper bound 

than the minute-sized estimates we read of earlier. 

In ns, this exponential doubling sequence continues 

indefinitely as path delay increases, until a reply is received. 

This is a useful reminder that simulation does not accurately 

reflect implementations. Opnet is more realistic here. 

We looked at Microsoft Windows as a common example 

implementation. TcpMaxConnectRetransmissions in 

the registry settings defaults to 2 retransmissions in a range of 

0-255, giving a maximum RTT of 9 seconds using the default 

TCPInitialRTT value of 3 seconds to double on [11]. 

These default settings and the radius of 4.5 light-seconds 

that results are enough to encompass the Earth and Moon; the 

maximum RTT supported here using a value of 255 SYN 

resends (1.7x10
77

 seconds) translates into a propagation 

distance that far exceeds the width of the visible universe. 

3 s RTO

1st resend

2nd resend

syn/ack repeat

0
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SYN/ACK reply

SYN/ACK reply with data

handshake
complete

time
(seconds)

first ack

6s backoff

12s backoff

syn/ack repeat

 
Fig. 2. TCP working with path of 16s delay, with resends 

before connection opens 
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Fig. 3. Clear RTO-related step in TCP transfer time as 

path delay increases 

 
Fig. 4. Time to transfer a file via FTP 

 
Fig. 5. Efficiency ratio for FTP file transfer 

The upper limit on times the initial SYN is sent out, and the 

initial RTO time that determines the intervals between times, 

can be easily altered in a communicating stack to other values 

to change the limits to which TCP will communicate, as can 

other defaults controlling TCP timers. But how well does TCP 

perform in communicating within these established bounds, 

once a connection has been opened at a long distance? 

D. Identified performance radii in TCP 

One performance radius in TCP is defined by its initial 

retransmission timeout – when the sender stops waiting for a 

segment to be acknowledged by the receiver, and retransmits 

it. This timeout value is initially set to 3 seconds [12]. Thus, a 

path of up to 1.5 seconds end-to-end can use this initial timer 

value; longer paths will fall outside this initial value, so some 

retransmissions will be seen as the timeout value is increased 

and TCP’s congestion window will be reduced as a result. We 

can show this by comparing the total times to transfer a file by 

ftp over TCP, for a range of path delays between end nodes. 

We used a single, reliable, error-free serial link between two 

nodes to avoid introducing the effects of MAC protocols and 

their timers into our results. 

In ns, the initial RTO value has traditionally been 6 

seconds; this was brought into line with RFC2988 by changing 

it to 3 seconds for the ns 2.30 release [13]. By comparing the 

amount of time taken to transfer a file by ftp for ns 2.29 and 

2.30 as path delay between the endhosts is increased by a 

minimum of 10ms across a number of transfers in separate 

simulation runs, we can see the effect on TCP SACK 

performance of this altered retransmission timer [Fig. 3]. 

Paths on the terrestrial Internet lie at the very left of this 

performance curve, with rapid response times well below the 

initial RTO limit. Transfer time increases with path delay 

either side of this step, but at different rates. TCP continues to 

deliver the file on paths whose end-to-end delay exceeds the 

timeout value (but whose length is bounded by the SYN/ACK 

exchange discussed earlier), but transfer performance suffers 

more than just the increase in path delay would suggest. 

We used Opnet to examine overall averaged TCP Reno 

goodput and throughput (the average fixed equivalent rate at 

which the file would have been transferred, and the average 

equivalent rate for all traffic sent, respectively) in bits per 

second as distance varies [Figs. 4 and 5]. These clearly show 

degradation of performance with increasing distance and path 

delay, with step changes in performance and phase changes in 

behaviour visible at half of known sum-of-SYN-timer-values 

(at 1.5s, 12s, and the limiting 22.5s). Examining the 

goodput/throughput ratio gives a measure of TCP’s efficiency 

for the traffic that it does send. This measure falls off rapidly 

once round-trip time exceeds the initial 3s RTO at 1.5s path 

delay, as the proportion of useful packets sent diminishes and 

the number of retransmissions increases. TCP’s throughput is 

still ultimately limited by its buffer sizes, and the lone TCP 

flow utilizes only a small fraction of available link capacity. 

Protocol radius behaviour is clearly independent of TCP 

buffer sizes and filesizes. As these sizes increase, performance 

changes remain at the known performance radii, caused by 

initial RTO timer values. Jitter occurs above the first 1.5s 

radius due to unavoidable timeouts and the effect of the coarse 

timer granularity, and become increasingly pronounced as the 

buffers and files increase in size, because more traffic is 

affected and resent when a timeout occurs. 

Our simulation results from ns and Opnet suggest that the 

SACK and timestamp mechanisms, which improve TCP 

performance in terrestrial networks, do not significantly 

benefit a single loss-free flow over extremely long distances, 

although their use can compensate for a coarser system clock. 

Performance slopes in ns were generally smoother due to 

the finer default timer granularity (0.1s in ns, 0.5s in Opnet) 

leading to fewer unnecessary timeouts. 

E. TCP and Delay-Tolerant Networking 

With these results, we can assess the suitability of using 
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TCP as a convergence layer or transport layer for Delay 

Tolerant Networking (DTN) [14]. TCP’s link utilization is 

poor, therefore, when two peer nodes are communicating 

across a dedicated temporary or intermittent link with a single 

flow from peer to peer, TCP would clearly be the last choice 

of protocol for efficiency reasons. 

However, where DTN bundles
 
[15] need to be transported 

across relatively small path distances over the terrestrial fixed 

Internet, TCP’s understanding of fairness when multiplexing 

multiple competing flows and its ability to effectively support 

file transfers as low-priority background traffic in the face of 

internetwork congestion come to the fore. 

TCP is very much a product of the prevailing conditions on 

the terrestrial Internet – and helped create those conditions. 

TCP’s design is unsuited to the long-distance paths of deep 

space, or to short ad-hoc communications in sensor networks 

where efficient use of a link by a single flow is unlike the 

shared, cooperative yet competing, Internet. TCP’s 

performance here could be improved, but it is an edge case as 

far as TCP’s design and the majority of its use is concerned. 

TCP would be unsuitable to communicate with a deep space 

probe around Mars, even if the initial SYN/ACK exchange 

timers were tweaked; data transfer would not use available 

link capacity effectively, and performance would be very 

poor. Where TCP breaks, much of the Internet infrastructure 

that depends on TCP also breaks. 

UDP-based transport protocols that can avoid sharing 

TCP’s assumptions have been developed, some for use with 

DTN [16]. However, these protocols have not seen large 

implementation deployment or a consistent feature set across 

the implementations that are in use. We feel there remains an 

opportunity for the development of a new approach to 

communication in DTN. While TCP has shown to be 

unsuitable for DTN store-and-forward scenarios, we are 

involved in the development of different approaches to 

approaching the long-distance communication and link 

utilization challenges in other, related, work [17] [18]. 

IV. FURTHER WORK 

We began with TCP to examine how protocol performance 

degrades with distance and is affected by internal protocol 

timers, simply because TCP is well-understood and 

straightforward to simulate. By deliberately ignoring errors we 

have found the outer bounds to the limits of communication; 

learning how errors bring these bounds inward is further work. 

The differences in simulation between ns and Opnet have 

shown limits to accuracy in simulation of TCP, as well as the 

importance of default values. 

It would be helpful to examine real implementations of TCP 

with a delay emulator that stores and releases packets.  

We have also analysed timers in other Internet protocols 

and the limits that they lead to, but lack of space prevents 

further discussion of those protocols here. 

Further work would also examine MAC protocols and their 

timers. Accurate and complete MAC simulation is difficult, so 

it would be desirable to examine MAC implementations in 

detail using a delay emulator. 

V. CONCLUSIONS 

Just as we use a link budget in radio communications to 

ensure that physical communications can take place 

successfully across a given distance, we need to design 

protocol communications with distance in mind, and check 

that the delay budget is adequate for the delays encountered. 

The design of many existing communication protocols 

assumes a limited distance or path delay between 

communicating endpoints. When this delay is exceeded, the 

performance of the protocol will be degraded.  

We have examined this behaviour for the popular 

Transmission Control Protocol, and have shown how TCP’s 

performance degrades with increasing distance to the point 

where communications finally fail at its protocol radius. 

Although TCP’s relatively weak performance across 

geostationary satellite links of around 0.5s round-trip time is 

well-known, how TCP’s performance degrades with distance 

beyond that was not. TCP could be used for direct Earth/Moon 

communication, as that range falls within the first 1.5s 

performance radius of TCP. However, a TCP transfer would 

not make effective use of available link capacity in that 

scenario; a more effective transport protocol would be needed 

to replace TCP to fill the link. 
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