
Delay Tolerant Networking session, Third International Workshop on Satellite and Space Communications, September 2007

1

Abstract—We examine how the design of the

Transmission Control Protocol (TCP) implicitly presumes

a limited range of path delays and distances between

communicating endpoints. We show that TCP is less suited

to larger delays due to the interaction of various timers

present in TCP implementations that limit performance

and, eventually, the ability to communicate at all as

distances increase. The resulting performance and protocol

radius metrics that we establish by simulation indicate how

the TCP protocol performs with increasing distance radius

between two communicating nodes, and show the

boundaries where the protocol undergoes visible

performance changes. This allows us to assess the

suitability of TCP for long-delay communication, including

for deep-space links.

Index Terms—Transmission Control Protocol, TCP, Delay

Tolerant Networking, DTN

I. INTRODUCTION

 Successful electrical communication between two points

requires that a signal be received and decoded. A link budget

can be used to determine whether this can be achieved by

adding up all the gains and losses accrued in the physical

channel between sender and receiver. The receiver has a

dynamic range in which signals are received, demodulated,

and decoded; if the sender is too far away, its signal will not

be received and decoded correctly, as the weak signal will lie

below the receiver’s noise floor, and be swamped by noise in

the channel. Conversely, if the sender is much closer than its

power output is designed for, its signal can exceed the

receiver’s dynamic range and oversaturate the receiver, as the

expected free-space attenuation component of the link budget

has decreased.

By analogy, for communications using networking

protocols above the physical layer, we must also consider the

delay budget between two communicating points. This delay

budget is the sum of separate delays. These can include:

a. propagation delay between endpoints, governed by speed

of light in the medium.

Manuscript prepared for camera proof 15 June 2007.

L. Wood is with the Global Government Solutions Group, Cisco Systems,

Bedfont Lakes, Feltham, Middlesex, England (email lwood@cisco.com).

C. Peoples is a PhD candidate in the School of Computing and Information

Engineering, University of Ulster, Coleraine, Northern Ireland (email

cathryn@infc.ulst.ac.uk).

G. Parr, B. Scotney and A. Moore are PhD supervisors, also in the School

at Ulster (email gp.parr, bw.scotney, aa.moore@ulster.ac.uk).

b. channelisation/serialisation delay; time between

transmitting the first and last bit of a frame. This is

significant at low data rates, but negligible at high data

rates. As the link rate increases this tends towards zero.

c. medium access delays dealing with contention for a shared

medium. Here, we assume point-to-point serial

communications, and neglect complex Medium Access

Control (MAC). Shared communication has not been used

beyond geostationary orbit.

d. processing/queuing/endhost delays, which may be

deliberately inserted to minimise resource use on the

network or in the endhost. For TCP, mechanisms such as

delayed acknowledgments [1] and Nagle’s algorithm [2]

can be significant in affecting two-way communications.

e. Codec delays. Minimising the other delay components

permits more time for advanced high-complexity codecs to

compress video or audio efficiently.

It is necessary to sum these time delays to see if the total

delay is suitable for logical communication to take place, just

as we sum decibels in the link budget to see if the physical

signal can be heard by the endpoints.

Many medium access and transport-layer protocols are

designed to perform within a certain delay range between the

two communicating points. At increased distances and larger

delays between communicating nodes, performance of the

examined protocol can be expected to degrade, and protocol

mechanisms can even cause communications using a protocol

to fail at sufficiently large distances and time delays.

Conversely, using a protocol between points with much

smaller delays than expected for the protocol can result in

exchanges being dominated by protocol transaction overheads

that produce degraded performance when compared to

alternative protocols more suited for the smaller delay times.

For example, consider TCP, the Internet’s Transmission

Control Protocol. TCP is widely recognised to perform poorly

across geostationary satellite links of around half a second of

path Round Trip Time (RTT) [3]. This is due to TCP’s

exponentially-increasing probing of path capacity in slow

start, and its assumption about fair use of network resources –

that every packet lost is due to network congestion, and that

this can be addressed by slowing TCP further. Similarly, TCP

has high delay overhead for fast parallel computers, where

interprocess communications can be done using something

that can use dedicated communications capacity without the

need to be as cautious or slow to build to high speeds as TCP.

These give us a very rough idea of the range of delays and

distances where TCP communication performs sufficiently

TCP’s protocol radius:

the distance where timers prevent communication

Lloyd Wood, Cathryn Peoples, Gerard Parr, Bryan Scotney and Adrian Moore

Delay Tolerant Networking session, Third International Workshop on Satellite and Space Communications, September 2007

2

well to be useful.

This paper examines the delays and distances more

precisely, in order to characterise TCP and its performance

limits more accurately.

II. PERFORMANCE AND PROTOCOL RADII

We call the limit within which a protocol works at the high

performance for which it was designed its high performance

radius. An endpoint using the protocol will be able to

communicate well by direct line of sight with another endpoint

within its performance radius.

The distance beyond which a protocol can no longer work

or be used to successfully communicate information, because

set timers within the protocol cause it to fail, is the protocol’s

limiting protocol radius. This limit forms a larger ‘bubble’

around the endpoint that encompasses the high performance

radius, and other performance radii where protocol timers

have caused changes in the performance of the protocol, rather

like the outer skin and concentric inner layers of an onion.

For wireless communication, this protocol radius can be

thought of as analogous to the Schwarzchild radius – the

distance beyond which information cannot escape from a

black hole. This bubble around an endpoint indicates the range

within which it can usefully exchange information with

another endpoint using the protocol: the protocol’s event

horizon, or a very different form of ‘networking black hole’

for outgoing traffic. These bubbles will fall well within the

boundaries of the ever-increasing Minkowski light cone that

indicates the radiation of signal from an endpoint. For paths

via a relay point, the limiting shape of the bubble is an

ellipsoid. These radii are shown [Fig. 1].

For convenience, we will define a distance between

communicating nodes in seconds of delay needed to travel that

distance. This simplifies calculations mapping the protocol

timers and their delay limits to path distances. Thus, for

wireless communications between two points in the vacuum of

space communicating at light speed c, we can translate the

seconds of path delay directly into light-seconds of distance,

assuming that the link bitrate is high enough that the

serialisation delay of the packet can be neglected, and ignoring

MAC timers. For other media where light travels more slowly,

we can compute the distance by dividing the delay by the

refractive index of the medium.

III. EXAMINATION OF TCP’S RADII

A. Dependence on IP

TCP segments are carried in IP packets, so it is worth

examining IP itself for limiting factors. IP’s Time-To-Live

(TTL) counter was originally specified to measure time in

seconds or hops [4]. TTL later became just a hop count, as

decrementing the TTL counter by one at each hop was easier

to compute. As TTL is stored in an octet, an IP packet can

traverse a maximum of 255 hops before the counter hits zero

and demands that the packet be deleted without forwarding.

However, the initial value is rarely set this high by the sender

even for multicast thresholds, and is more likely to be 32.

Entire protocol fails hard. Beyond this

distance, communication cannot take

place using this protocol.

A number of possible step changes

in performance due to timers in the

protocol state machine becoming

limiting factors.

protocol radius R

2R >= usable RTT

performance

radius r

Volume within performance

radius r where protocol will

work entirely as designed

Figure shows great-circle
cross-section of protocol

radius sphere or ‘bubble’.

e
x
p

re
s
s
e

d
 i
n

 d
is

ta
n

c
e
 o

r
in

 t
im

e
 t

lig
h
t-

s
e

c
o
n
d

s
 s

e
rv

e
s
 b

o
th

 p
u
rp

o
s
e

s

Nodes able to communicate at highest performance range for which

protocol was designed. Connection is established. (Distance between

nodes can be slowly increased for new simulation runs to establish radii).

Nodes unable to communicate via protocol – beyond protocol radius distance.
Connection is not established. (Simulations no longer need to be run.)

Assume direct line of sight is blocked by a body, requiring a
simple relay node. The bubble becomes an ellipsoid, where
a + b <= protocol radius R.

a b

Fig. 1. Depictions of protocol and performance radii for

free-space communication

Delay Tolerant Networking session, Third International Workshop on Satellite and Space Communications, September 2007

3

TTL places an upper limit on the number of links that can

be concatenated for end-to-end communication, but this limit

is rarely encountered, so we can ignore it while focusing on

total path delay. Although there are many timers involved in

underlying MAC layers setting up an IP link, there are no

timers in IP as such. IP does have other limitations – lack of

support for mobility in a design intended for fixed, wired links

being one – but these are outside the scope of this paper. We

can move on to examine TCP with a clear conscience.

B. Test scenarios: the simulation environments

We examined the performance of TCP by increasing path

delay between nodes in the network simulator ns 2.30 [5] and

in Opnet 11.5. We examined TCP Reno, TCP SACK and

timestamps. We relied to a large extent on given simulator

defaults, as we recognise that implementation defaults can

vary widely, and seeing common behaviour across a wide

range of conditions (including differing simulation

environments) leads to insights. In both simulators, a single

reliable serial link was used to remove the effects of errors and

of MAC protocol timers. Unidirectional HDLC/Frame Relay

serial links carrying IP are in use for wireless point-to-point

space communications, so a serial link is not unrealistic [6,

7].This link was set at a high enough rate to remove

serialisation artefacts discussed earlier. Channel-induced

errors were eliminated to allow us to focus solely on TCP’s

own performance.

Using the default 16-bit pointer to its fullest with a 64K

window makes sense with long delays, so that was tested

alongside default buffer sizes. In the interests of keeping

simulations tractable, we did not examine large windows

extensions to TCP. TCP link utilization is ultimately limited

by its buffer sizes; a large link rate ensures that that rate does

not affect simulations, and that TCP is limited by its windows.

The initial retransmission timeout (RTO) value was 3 seconds,

minimum RTO 1s and maximum RTO 64s. Timer granularity

was the default in the simulators: a fairly coarse-grained 0.5s

in Opnet, and 0.1s in ns. FTP file transfers were used.

C. TCP’s protocol radius - the SYN/ACK handshake

TCP was initially said to have a maximum segment lifetime

of two minutes, with a global timeout of five minutes to abort

the connection if no data was delivered [8], although this was

not widely adopted in implementations. A two-minute

segment and packet lifetime, mapped to a four-minute RTT,

would mean that nodes attempting to communicate across a

path longer than two minutes in length would fail to talk.

There is no formal upper bound on RTT, but an RTT of

greater than one minute is claimed to be unlikely [9].

TCP’s tolerance to delay is governed by its initial

retransmission timeout (RTO) value, and by the timers used to

open a connection in the three-way SYN/ACK exchange

between sender and receiver. If this exchange is not

successfully completed, data transfer cannot even begin.

When opening a TCP connection, the sender will send a

SYN packet for the receiver to acknowledge with a

SYN/ACK, before the sender sends its own SYN/ACK in a

three-way handshake.

The sender waits for a reply to its initial SYN, but does not

wait indefinitely. After the initial RTO time of three seconds

has passed, another SYN will be sent – and the sender will

then double the time it waits to six seconds. If this is not

replied to, another SYN is sent after six seconds, and the

sender doubles its waiting time again, leading to SYNs at 0, 3,

6, 12, 24, ... second intervals, or 0, 3, 9, 21, 45, ... s after the

first SYN. So, for long-delay paths, more than one initial SYN

is sent, and a reply to the first SYN is finally received by the

sender in the window of a subsequent SYN that is still in

transit to the receiver. This is shown in Figure 2. This patient

doubling and waiting for an initial response could go on

indefinitely, but TCP implementations give up and report an

error to the application eventually. The inefficiencies of TCP’s

timer mechanisms have long been noted [10].

In Opnet simulations, a TCP sender and receiver were

unable to establish a connection when the distance between

the two was greater than 22.5 seconds, or a path RTT of 45

seconds. 45 seconds is the sum of the intervals 0+3+6+12+24

seconds, resulting from the Opnet TCP implementation

attempting to open the connection five times before giving up

because no response has been received. If we consider this for

line of sight, 22.5 light seconds is enough to include all the

Earth/Moon Lagrange points, but is a smaller upper bound

than the minute-sized estimates we read of earlier.

In ns, this exponential doubling sequence continues

indefinitely as path delay increases, until a reply is received.

This is a useful reminder that simulation does not accurately

reflect implementations. Opnet is more realistic here.

We looked at Microsoft Windows as a common example

implementation. TcpMaxConnectRetransmissions in

the registry settings defaults to 2 retransmissions in a range of

0-255, giving a maximum RTT of 9 seconds using the default

TCPInitialRTT value of 3 seconds to double on [11].

These default settings and the radius of 4.5 light-seconds

that results are enough to encompass the Earth and Moon; the

maximum RTT supported here using a value of 255 SYN

resends (1.7x10
77

 seconds) translates into a propagation

distance that far exceeds the width of the visible universe.

3 s RTO

1st resend

2nd resend

syn/ack repeat

0

3

9

21

SYN sent

SYN/ACK reply

SYN/ACK reply with data

handshake
complete

time
(seconds)

first ack

6s backoff

12s backoff

syn/ack repeat

Fig. 2. TCP working with path of 16s delay, with resends

before connection opens

Delay Tolerant Networking session, Third International Workshop on Satellite and Space Communications, September 2007

4

Fig. 3. Clear RTO-related step in TCP transfer time as

path delay increases

Fig. 4. Time to transfer a file via FTP

Fig. 5. Efficiency ratio for FTP file transfer

The upper limit on times the initial SYN is sent out, and the

initial RTO time that determines the intervals between times,

can be easily altered in a communicating stack to other values

to change the limits to which TCP will communicate, as can

other defaults controlling TCP timers. But how well does TCP

perform in communicating within these established bounds,

once a connection has been opened at a long distance?

D. Identified performance radii in TCP

One performance radius in TCP is defined by its initial

retransmission timeout – when the sender stops waiting for a

segment to be acknowledged by the receiver, and retransmits

it. This timeout value is initially set to 3 seconds [12]. Thus, a

path of up to 1.5 seconds end-to-end can use this initial timer

value; longer paths will fall outside this initial value, so some

retransmissions will be seen as the timeout value is increased

and TCP’s congestion window will be reduced as a result. We

can show this by comparing the total times to transfer a file by

ftp over TCP, for a range of path delays between end nodes.

We used a single, reliable, error-free serial link between two

nodes to avoid introducing the effects of MAC protocols and

their timers into our results.

In ns, the initial RTO value has traditionally been 6

seconds; this was brought into line with RFC2988 by changing

it to 3 seconds for the ns 2.30 release [13]. By comparing the

amount of time taken to transfer a file by ftp for ns 2.29 and

2.30 as path delay between the endhosts is increased by a

minimum of 10ms across a number of transfers in separate

simulation runs, we can see the effect on TCP SACK

performance of this altered retransmission timer [Fig. 3].

Paths on the terrestrial Internet lie at the very left of this

performance curve, with rapid response times well below the

initial RTO limit. Transfer time increases with path delay

either side of this step, but at different rates. TCP continues to

deliver the file on paths whose end-to-end delay exceeds the

timeout value (but whose length is bounded by the SYN/ACK

exchange discussed earlier), but transfer performance suffers

more than just the increase in path delay would suggest.

We used Opnet to examine overall averaged TCP Reno

goodput and throughput (the average fixed equivalent rate at

which the file would have been transferred, and the average

equivalent rate for all traffic sent, respectively) in bits per

second as distance varies [Figs. 4 and 5]. These clearly show

degradation of performance with increasing distance and path

delay, with step changes in performance and phase changes in

behaviour visible at half of known sum-of-SYN-timer-values

(at 1.5s, 12s, and the limiting 22.5s). Examining the

goodput/throughput ratio gives a measure of TCP’s efficiency

for the traffic that it does send. This measure falls off rapidly

once round-trip time exceeds the initial 3s RTO at 1.5s path

delay, as the proportion of useful packets sent diminishes and

the number of retransmissions increases. TCP’s throughput is

still ultimately limited by its buffer sizes, and the lone TCP

flow utilizes only a small fraction of available link capacity.

Protocol radius behaviour is clearly independent of TCP

buffer sizes and filesizes. As these sizes increase, performance

changes remain at the known performance radii, caused by

initial RTO timer values. Jitter occurs above the first 1.5s

radius due to unavoidable timeouts and the effect of the coarse

timer granularity, and become increasingly pronounced as the

buffers and files increase in size, because more traffic is

affected and resent when a timeout occurs.

Our simulation results from ns and Opnet suggest that the

SACK and timestamp mechanisms, which improve TCP

performance in terrestrial networks, do not significantly

benefit a single loss-free flow over extremely long distances,

although their use can compensate for a coarser system clock.

Performance slopes in ns were generally smoother due to

the finer default timer granularity (0.1s in ns, 0.5s in Opnet)

leading to fewer unnecessary timeouts.

E. TCP and Delay-Tolerant Networking

With these results, we can assess the suitability of using

Delay Tolerant Networking session, Third International Workshop on Satellite and Space Communications, September 2007

5

TCP as a convergence layer or transport layer for Delay

Tolerant Networking (DTN) [14]. TCP’s link utilization is

poor, therefore, when two peer nodes are communicating

across a dedicated temporary or intermittent link with a single

flow from peer to peer, TCP would clearly be the last choice

of protocol for efficiency reasons.

However, where DTN bundles

[15] need to be transported

across relatively small path distances over the terrestrial fixed

Internet, TCP’s understanding of fairness when multiplexing

multiple competing flows and its ability to effectively support

file transfers as low-priority background traffic in the face of

internetwork congestion come to the fore.

TCP is very much a product of the prevailing conditions on

the terrestrial Internet – and helped create those conditions.

TCP’s design is unsuited to the long-distance paths of deep

space, or to short ad-hoc communications in sensor networks

where efficient use of a link by a single flow is unlike the

shared, cooperative yet competing, Internet. TCP’s

performance here could be improved, but it is an edge case as

far as TCP’s design and the majority of its use is concerned.

TCP would be unsuitable to communicate with a deep space

probe around Mars, even if the initial SYN/ACK exchange

timers were tweaked; data transfer would not use available

link capacity effectively, and performance would be very

poor. Where TCP breaks, much of the Internet infrastructure

that depends on TCP also breaks.

UDP-based transport protocols that can avoid sharing

TCP’s assumptions have been developed, some for use with

DTN [16]. However, these protocols have not seen large

implementation deployment or a consistent feature set across

the implementations that are in use. We feel there remains an

opportunity for the development of a new approach to

communication in DTN. While TCP has shown to be

unsuitable for DTN store-and-forward scenarios, we are

involved in the development of different approaches to

approaching the long-distance communication and link

utilization challenges in other, related, work [17] [18].

IV. FURTHER WORK

We began with TCP to examine how protocol performance

degrades with distance and is affected by internal protocol

timers, simply because TCP is well-understood and

straightforward to simulate. By deliberately ignoring errors we

have found the outer bounds to the limits of communication;

learning how errors bring these bounds inward is further work.

The differences in simulation between ns and Opnet have

shown limits to accuracy in simulation of TCP, as well as the

importance of default values.

It would be helpful to examine real implementations of TCP

with a delay emulator that stores and releases packets.

We have also analysed timers in other Internet protocols

and the limits that they lead to, but lack of space prevents

further discussion of those protocols here.

Further work would also examine MAC protocols and their

timers. Accurate and complete MAC simulation is difficult, so

it would be desirable to examine MAC implementations in

detail using a delay emulator.

V. CONCLUSIONS

Just as we use a link budget in radio communications to

ensure that physical communications can take place

successfully across a given distance, we need to design

protocol communications with distance in mind, and check

that the delay budget is adequate for the delays encountered.

The design of many existing communication protocols

assumes a limited distance or path delay between

communicating endpoints. When this delay is exceeded, the

performance of the protocol will be degraded.

We have examined this behaviour for the popular

Transmission Control Protocol, and have shown how TCP’s

performance degrades with increasing distance to the point

where communications finally fail at its protocol radius.

Although TCP’s relatively weak performance across

geostationary satellite links of around 0.5s round-trip time is

well-known, how TCP’s performance degrades with distance

beyond that was not. TCP could be used for direct Earth/Moon

communication, as that range falls within the first 1.5s

performance radius of TCP. However, a TCP transfer would

not make effective use of available link capacity in that

scenario; a more effective transport protocol would be needed

to replace TCP to fill the link.

REFERENCES

[1] M. Allman, “On the Generation and Use of TCP Acknowledgments,”

ACM Computer Communications Review, 1998.

[2] J. Nagle, “Congestion control in IP/TCP internetworks,” Internet

Engineering Task Force RFC 896, January 1984.

[3] C. Partridge and T. Shepard, “TCP Performance Over Satellite Links,”

IEEE Network, vol. 11 no. 5, September/October 1997.

[4] J. Postel, “Internet Protocol specification,” Internet Engineering Task

Force RFC 791, September 1981.

[5] K. Fall and K. Varadhan, The ns manual, 2007.

[6] K. Hogie et al., “Using standard Internet Protocols and applications in

space,” Computer Networks, vol. 47 no. 5, pp. 603-650, April 2005.

[7] L. Wood, W. Ivancic et al., “Using Internet nodes and routers onboard

satellites,” International Journal of Satellite Communications and

Networking, volume 25 issue 2, pp. 195-216, March/April 2007.

[8] J. Postel, “Transmission Control Protocol specification,” Internet

Engineering Task Force RFC 793, September 1981.

[9] V. Jacobson, R. Braden and D. Borman, “TCP Extensions for High

Performance,” Internet Engineering Task Force RFC 1323, May 1992.

[10] L. Zhang, “Why TCP timers don’t work well,” ACM SIGCOMM, pp.

397-405, 1986.

[11] Microsoft Windows 2003 TCP/IP Implementation, TechNet, Microsoft

Corporation, June 2006.

[12] V. Paxson and M. Allman, “Computing TCP’s retransmission timer,”

Internet Engineering Task Force RFC 2988, November 2000.

[13] S. Floyd, ns changelog entry, 23 January 2006.

[14] V. Cerf, S. Burleigh et al., “Delay Tolerant Network Architecture,” IETF

RFC 4838, April 2007.

[15] K. Scott and S. Burleigh, “Bundle Protocol Specification,” work in

progress as an IETF internet draft, December 2006.

[16] M. Ramadas et al., “Licklider Transmission Protocol – Specification,”

work in progress as an IETF internet draft, September 2006.

[17] C. Peoples, G. Parr, B. Scotney, A. Moore, “A Reconfigurable Context-

Aware Protocol Stack for Interplanetary Communication,” Third

International Workshop on Satellite and Space Communications

(IWSSC ’07), September 2007.

[18] L. Wood, W. Eddy, W. Ivancic, J. McKim and C. Jackson, “Saratoga: a

Delay-Tolerant Networking convergence layer with efficient link

utilization,” Third International Workshop on Satellite and Space

Communications (IWSSC ’07), September 2007.

