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ABSTRACT
Routing in delay tolerant networks (DTNs) benefits con-
siderably if one can take advantage of knowledge concern-
ing node mobility. The main contribution of this paper is
the definition of a generic routing scheme for DTNs using a
high-dimensional Euclidean space constructed upon nodes’
mobility patterns. We call this the MobySpace. One way of
representing nodes in this space is to give them coordinates
that correspond to their probability of being found in each
possible location. We present simulation results indicating
that such a scheme can be beneficial in a scenario inspired
by studies done on real mobility traces. This work should
open the way to further use of the virtual space formalism
in DTN routing.

Categories and Subject Descriptors
C.2 [Computer-Communication Networks]: Network
Architecture and Design

General Terms
Algorithms, Performance, Experimentation
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1. INTRODUCTION
The novelty of the work presented here is that we tran-

scribe the problem of routing in a delay tolerant network
(DTN) [9] on the basis of mobility patterns into a problem
of routing in a virtual space defined by those patterns. By
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doing so, we can bring the powerful formalism of Euclidean
space to bear on the problem of DTN routing.

In one common DTN scenario, nodes are mobile and have
wireless networking capabilities. They are able to commu-
nicate with each other only when they are within transmis-
sion range. The network suffers from frequent connectivity
disruptions, making the topology only intermittently and
partially connected. This means that there is a very low
probability that an end-to-end path exists between a given
pair of nodes at a given time. End-to-end paths can ex-
ist temporarily, or may sometimes never exist, with only
partial paths emerging. Due to these disruptions, regular
ad-hoc networking approaches to routing and transport do
not work, and new solutions must be proposed.

The Delay Tolerant Network Research Group (DTNRG) [1]
has proposed an architecture [5] to support messaging that
may be used by delay tolerant applications in such a con-
text. The architecture consists mainly of the addition of an
overlay, called the bundle layer, above a network’s trans-
port layer. Messages transferred in DTNs are called bun-
dles. They are transferred in an atomic fashion between
nodes using a transport protocol that ensures node-to-node
reliability. These messages can be of any size. Nodes are
assumed to have large buffers in which they can store the
bundles.

Routing is one of the very challenging open issues in DTNs,
as mentioned by Jain et al. [11]. Indeed, since the network
suffers from connectivity issues, MANET [7] routing algo-
rithms such as OLSR, based on the spreading of control
information, or AODV, which is on-demand, fail to achieve
routing. Different approaches have to be found.

Epidemic routing is a possible solution when nothing is
known about the behavior of nodes. Since it can lead to
buffer overflows and inefficient use of transmission media,
one would prefer to limit bundle duplication and instead
use routing heuristics that can take advantage of context.
In order to move in such a direction, the DTN architecture
defines several types of contacts: scheduled, opportunistic,
and predicted. Scheduled contacts can exist, for instance,
between a base station somewhere on earth and a low earth
orbiting relay satellite. Opportunistic contacts are created
simply by the presence of two entities at the same place, in
a meeting that was neither scheduled nor predicted. Finally,
predicted contacts are also not scheduled, but predictions of
their existence can be made by analyzing previous observa-
tions.

Some work has been done with scheduled contacts, such as
the scheme described by Jain et al. [11] that tries to improve
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the connectivity to the internet of an isolated village based
on knowledge of when a low-earth orbiting relay satellite
and a motorbike might be available to make the necessary
connections. Also of interest, work by Akyildiz et al. [2] on
inter-planetary networking uses predicted contacts, such as
the ones between planets, within the framework of a DTN
architecture. The case of only opportunistic contacts has
been analyzed by Vahdat and Becker [18] using the epidemic
routing scheme.

Most of the work concerning routing in DTNs has been
performed with predicted contacts, such as the algorithm of
Lindgren et al. [12], which relies on nodes having a com-
munity mobility pattern. Nodes mainly remain inside their
community and sometimes visit others. To route a bun-
dle to a destination, a node may transfer that bundle to
a node that belongs to the same community as the des-
tination. In a similar manner, Burns et al. [4] proposed
a routing algorithm that uses past frequencies of contacts.
Also making use of past contacts, Davis et al. [8] improved
the basic epidemic scheme with the introduction of adaptive
dropping policies. Recently, Musolesi et al. [14] have intro-
duced a generic method that uses Kalman filters to combine
and evaluate the multiple dimensions of the context in or-
der to take routing decisions. The context is made up of
measurements that nodes perform periodically, which can
be related to connectivity issues, but not necessarily. This
mechanism allows network architects to define their own hi-
erarchy among the different context attributes.

The case study presented in this paper also relies on con-
tacts that can be characterized as predicted, but the under-
lying idea is a more generic abstraction compared to previ-
ous work, being able to capture the interesting properties of
major mobility patterns for routing. The main contribution
of this paper is the use, for routing in DTNs, of the formal-
ism of a high-dimensional Euclidean space based on nodes’
mobility patterns. We show the feasibility of this concept
through an example in which each dimension represents the
probability for a node to be found in a particular location.
We conduct a simulation that produces promising initial re-
sults for this concept.

Applying the formalism of Euclidean space to computer
networking problems is not in itself a new idea. To our
knowledge, however, it has not previously been used for
DTN routing. Furthermore, we believe that the idea of con-
structing a virtual space based upon mobility patterns is
new.

Previous work with Euclidean spaces for networking has
included the geolocalization of internet hosts, as in the Geo-
Ping technique developed by Padmanabhan and Subrama-
nian [15]. The position of a host to localize in Euclidean
space is compared to the position of well know landmark
nodes in order to estimate the host’s location. Round trip
times are used to determine coordinates. As opposed to
what we do here, this Euclidean space is not used for rout-
ing.

Euclidean spaces have also been exploited in peer-to-peer
architectures, notably by Ratnasamy et al. for CAN [17],
in order to construct a robust and scalable mechanism to
handle search queries. In this case, the Euclidean space is
a virtual space, in which keys describing files are assigned
virtual coordinates, and each node in the system governs a
portion of the space. Queries are routed from node to node
in the direction of the key’s coordinates.

The routing scheme presented in this paper is similar to
the one of CAN, since messages are routed in a virtual space.
As opposed to CAN, in our scheme there is no notion of
neighbor in the virtual space. Nodes may be directly con-
nected to nodes that are nearby or that are very far. And
these connections arise and dissolve dynamically as a func-
tion of node mobility in the physical space. Nodes oppor-
tunistically take advantage of connections that promise to
advance bundles toward the destination.

The rest of the paper is structured as follows. Sec. 2
describes the mobility pattern based routing scheme. Sec. 3
presents the simulation results. Sec. 4 concludes the paper,
discussing directions for future work.

2. ROUTING IN A MOBILITY PATTERN
SPACE

This section first presents the idea behind routing in a
high-dimensional Euclidean space constructed upon mobil-
ity patterns of nodes and then shows how we applied this
idea within the framework of a scenario inspired by real ob-
servations.

2.1 Concept
The Euclidean virtual space, or MobySpace, introduced

here is a generalization of ideas that are already current
in the DTN literature. The principle is to use a Euclidean
space as a tool to help nodes to take routing decisions. These
decisions rely on the notion that a node is a good candidate
for taking custody of a bundle if it has a mobility pattern
similar to that of the bundle’s destination. Routing is done
by forwarding bundles toward nodes that have mobility pat-
terns that are more and more similar to the mobility pattern
of the destination. Since in the MobySpace, the mobility
pattern of a node provides its coordinates, its MobyPoint,
routing is done by forwarding bundles toward nodes that
have their MobyPoint closer and closer to the MobyPoint of
the destination.

Several questions arise. What type of dimensions do we
choose, how many, and what kind of range for values do
we define? How do we define the notion of distance? Is
straightforward Euclidean distance useful or are other simi-
larity functions more appropriate? Is it possible to have an
infinite space in terms of the number of dimensions? What
might be the problems with such a scheme?

Note that the objective of this paper is not to answer all
these questions. It is to introduce a new concept for routing
and to examine some of the interesting problems that the
concept presents. In this section, we describe a manner in
which mobility patterns can be characterized and discuss
other possible alternatives. The question of the choice of a
similarity metric is addressed in Sec. 2.2.

2.1.1 Mobility pattern characterization
Several methods could be employed to describe a mobility

pattern. For instance it could be based upon historic infor-
mation regarding contacts that the node has already had.
If we want to route a bundle from one node to another, we
have an interest in considering information on these contacts
as forming a virtual space. Each possible contact is an axis,
and the distance along that axis indicates a measure of the
probability of contact. Two nodes that have a similar set
of contacts that they see with similar frequencies are close
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in this space, whereas nodes that have very different sets of
contacts, or that see the same contacts but with very dif-
ferent frequencies, are going to be far. It seems reasonable
that one would wish to pass a bundle to a node that is as
close as possible to the destination in this space, because
this should improve the probability that it will eventually
reach the destination.

In the virtual contact space just described, knowledge of
all axes of the space requires knowledge of all nodes that are
circulating in the space. Note that a full knowledge of the
axes might not be required for successful routing. Nonethe-
less, we might wish to consider an alternative space in which
there is a fixed, or at least more limited and well known
number of axes. If nodes’ visits to particular locations can
be tracked, then the mobility pattern of a node can be de-
scribed by its visits to these locations. In this scenario, each
axis represents a location, and the distance along the axis
represents the probability of finding a node at that location.
We can imagine that nodes that have similar probabilities
of visiting a similar set of locations are more likely to en-
counter each other than nodes that are very different in these
respects. This is the kind of MobySpace that we employ in
the study described in Sec. 2.2.

2.1.2 Possible limits and issues
DTN Routing in a contact space or a mobility space is

based on the assumption that there will be regularities in
the contacts that nodes have or their choices of locations to
visit. There is always the possibility that we may encounter
mobility patterns similar to the ones observed with random
mobility models. The efficiency of the virtual space as a tool
may be limited if nodes too rapidly change their habits.

Some problems could occur even if nodes have well defined
mobility patterns For instance, in the MobySpace, a bundle
may reach a local maximum if a node has a mobility pattern
that is the most similar in the local neighborhood to the
destination node’s mobility pattern, but is not sufficient for
one reason or another to achieve delivery. In the second type
of space, where each dimension represents a location, it can
happen if nodes visit similar places, but for timing reasons,
such as being on opposite diurnal cycles, they never meet.

Other issues surrounding the use of a virtual contact space
or mobility space are discussed in Sec. 4.

2.2 A case study
Recent studies of the mobility of students in a campus

[13, 10, 6] or corporate users [3] equipped with PDAs or
laptops able to be connected to wireless access networks,
show that they follow common mobility patterns. They
show that significant aspects of the behavior can be charac-
terized by power-law distributions. Specifically, the session
durations and the frequencies of the places visited by users
follow power laws. This means that users typically visit a
few access points frequently while visiting the others rarely,
and that users may stay at few locations for long periods
while visiting the others for very short periods. Henderson
et al. observed [10] that 50% of users studied spent 62% of
their time attached to a single access point and this pro-
portion decreased exponentially. If we take these wireless
access network studies to be representative of a class of mo-
bile node behavior, we can consider that these observations
are applicable to at least certain DTN scenarios.

For this case study we propose the following mobility
model. Let us consider a set of nodes that move among
a set of N locations. Two nodes can communicate only if
they are at the same location. Node movements are based on
power-laws, and each node has a mobility pattern defined by
the distribution of P . P (i) is the probability for the node to
be at location i and P (i) = K

`

1

d

´ni with ni the preference
index of location i, d the exponent of the power-law based
mobility pattern and K a constant. nj = 0 means that the
location j is the preferred one. Because

P

i
P (i) = 1, we

have:

K =
1 − 1

d

1 − 1

dN

(1)

Under this model, d is the fundamental parameter gov-
erning node behavior. As shown in Fig. 1, when d is high,
nodes tend to move among a very small subset of locations,
having one that they strongly prefer to the others. As d

approaches 1, the range of locations that nodes visit reg-
ularly becomes wider, while still presenting a hierarchy of
preferences. When d = 1, we have equiprobability.
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Figure 1: Power-law probability distributions for

different values of d

Note that a mobility pattern should also characterize the
time that a node remains at each location. We propose to
capture this in the mobility model described here by uni-
formly distributing the resting time at each location over
the interval [tmin,tmax] with tmin and tmax quite close to-
gether, and by allowing nodes to randomly choose the same
location consecutively.

For each of the nodes in this model, there is therefore a
well defined probability of finding that node at each of the N

locations. This set of probabilities is a node’s mobility pat-
tern, and is described by a MobyPoint, in an N dimensional
MobySpace. We propose to route bundles in the MobySpace
by sending them to nodes having mobility patterns that are
successively closer to the mobility pattern of the destina-
tion. In simple words, we prefer to give custody of a bundle
to a node that has mobility habits similar to those of the
bundle’s destination. In order to complete our model, we
therefore require a similarity function that can be used to
compare mobility patterns.

We study the following functions, each of which is a mea-
sure of similarity between two points in a Euclidean space:
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• Euclidean distance: This is the most common distance
measure. It returns the root of the sum of the square
differences between the coordinates of a pair of points.

dij =

v

u

u

t

n
X

k=1

(xik − xjk)2 (2)

• Canberra distance: Canberra distance returns the sum
of a series of fractional differences between coordinates
of a pair of points. Each fractional difference term has
a value between 0 and 1. If one of coordinate is zero,
the term is defined to be unity regardless the other
value.

dij =
n

X

k=1

|xik − xjk|

|xik| + |xjk|
(3)

• Cosine angle separation: This measure represents the
cosine of the angle between two vectors. It measures
similarity rather than distance or dissimilarity. Thus,
a high cosine angle separation value indicates that two
vectors are similar.

sij =

Pn

k=1
xik.xjk

q

Pn

k=1
x2

ik.
Pn

r=1
x2

jr

(4)

• Matching distance: This measure is simply the raw
number of location probabilities that are similar for
two nodes. We consider two coordinates on a given
axis to be similar if their absolute difference is less
than or equal to a defined value δ.

In the routing scheme presented here, the only informa-
tion that must be flooded by nodes is their mobility patterns.
These mobility patterns can be spread in an epidemic fash-
ion. Furthermore, we introduce an optimization based upon
the power-law distribution of probabilities. Under this opti-
mization, nodes transmit only the main components of their
mobility patterns. The other components are presumably
negligible in comparison. We examine the performance and
the limits of such an optimization in Sec. 3.2.2.

3. SIMULATION RESULTS
This section presents the manner in which we evaluated

the mobility pattern based routing scheme, and the results
we obtained.

3.1 Methodology
We have implemented a stand alone simulator to evaluate

the mobility pattern based routing scheme presented in this
paper. This simulator only implements the transport and
network layers and it makes simple assumptions regarding
lower layers, for instance allowing for infinite bandwidth.

We studied the use of each of the four functions described
in the previous section for routing in the MobySpace. We
will refer to them here by the following names: Euclidean,
using the Euclidean distance metric; Canberra, using the
Canberra distance metric; Angle, using the cosine angle sep-
aration distance metric; and Matching, using the matching

distance metric. We compared these MobySpace routing al-
gorithms against the following:

• Epidemic: This is based on epidemic routing, as de-
scribed by Vahdat and Becker [18]: Each time two
nodes meet, they exchange their bundles. The major
interest of this algorithm is that it provides the opti-
mum path and thus the minimum bundle delay. We
use it here as a lower bound. In practice, epidemic
routing suffers from high buffer occupancy and high
bandwidth utilization.

• Opportunistic: A node waits to meet the destination
in order to transfer its bundle. The main advantage of
this method is that it involves only one transmission
per bundle.

• Random: When a node is at a location and the bun-
dle’s destination in not there, the node transfers the
bundle to a neighbor chosen at random. We have
added a rule to avoid local loops: a node can only han-
dle a bundle one time per location visit. This scheme
is used in this paper as another basis of comparison.
A novel algorithm should perform better than this one
in order to be valuable.

All the scenarios simulated in the rest of the paper share
common parameters that can be found in Table 1. We con-
sidered a set of 25 locations. The MobySpace used for rout-
ing thus has 25 dimensions. There are 50 mobile nodes.
Every node generates bundles destined toward each of the
others every 30 s with the first bundle being sent at a time
randomly chosen from a uniform distribution over the inter-
val [0,30s]. Simulations last 4000 s. We generate traffic in
the first 500 s of the simulations in order to give enough time
for all the bundles to reach their destination. The simulator
used a time step of 10 ms.

Parameter Value

Number of nodes 50

Number of locations 25

Simulation duration 4000 s

Traffic generation until 500 s

Packet interval 30 s

tmin 5 s

tmax 15 s

δ 210−8

Time step 10 ms

Table 1: Simulation parameters

We have tested two variants of the mobility pattern based
routing scheme. In the first, we assume that a node that is
sending a bundle has full knowledge of the destination’s mo-
bility pattern, and that it addresses the bundle accordingly.
In the second, we assume that nodes communicate only the
major components of their mobility patterns. This reduces
the amount of control traffic exchanged between nodes, but
it also means that a node that is sending a bundle can only
specify partial information regarding the destination.

3.2 Results
We evaluate routing algorithms on their transport layer

performance in the simulation. We consider a good algo-
rithm to be one that yields a low average bundle delay and
a low average route length.

279



3.2.1 With full knowledge
We preface our detailed discussion of simulation results

with the observation that Euclidean and Angle yielded iden-
tical results. This may be explained by the fact that when
the number of dimensions of the space is high, there is a
strong correlation between those metrics, as shown by Qian
et al. [16]. In this section, therefore, the Euclidean and An-
gle results are reported together.

We performed 5 runs for each set of parameters (the num-
ber was limited by the length of time required for simula-
tions). Figures reported in the tables here are mean results
with confidence intervals at the 90% confidence level, ob-
tained using the Student t distribution.

d 1.1 1.5 2

Epidemic 10.9 ±7.3 13.2 ±0.4 16.2 ±0.5

Opportunistic 123.3 ±7.7 287.4 ±8.4 550.2 ±15.2

Random 117.8 ±8.0 160.0 ±1.9 203.3 ±17.3

Euclidean & Angle 103.0 ±7.7 59.1 ±2.7 54.6 ±2.0

Canberra 104.8 ±4.6 113.4 ±10.4 245.0 ±41.2

Matching 118.5 ±5.7 189.5 ±12.1 352.9 ±56.0

Table 2: Average bundle delay

Table 2 presents the mean bundle delay obtained for each
routing algorithm, and for various exponents, d, of the power
law distribution, describing the preferential attachment of
nodes toward each location. The notable feature of these
results is that Euclidean and Angle show improved perfor-
mance with an increase in d, whereas performance declines
for all other routing algorithms as d increases. Opportunis-
tic performs worst, followed closely by Random, Matching,
and Canberra.

The fact that Matching and Canberra are worse than Ran-
dom is interesting. One hypothesis could be that they are
actively making poor choices. However, we have reason to
believe that Random has a delay advantage that Match-
ing and Canberra do not share. In Random, bundles will
jump to other nodes without any preference ordering. This
makes for highly mobile bundles, as is borne out by their ex-
traordinarily high average route lengths, shown in Table 3.
One might not necessarily want to pay the price of such
processing overhead in order to obtain modest gains in de-
lay. A better standard for comparison might be a random
algorithm that shows preferences, as do Matching and Can-
berra, but preferences that are purely random in nature.
Our judgment concerning Matching and Canberra is thus
still in reserve pending further study.

Projecting from the results in this section, we might ask
what would happen for ever higher values of d. Recall that,
the higher the value of d, the higher the probabilities are that
nodes will find themselves at a few select locations. For a
high enough value, there would be little node movement, and
little diversity in their movements. We would expect this
to have a negative effect on all routing schemes, including
Euclidean and Angle. We have not yet had the opportunity
to conduct studies to see if this phenomenon emerges as
expected.

Table 4 and Table 5 are representative plots from one of
the five experiments conducted. Note that bins of size 1
s have been used to aggregate data and that 38378 bun-
dles have been generated in this run. Table 4 presents the
frequency of the delay difference in seconds compared to
Epidemic. For each bundle, we have compared the delay we

d 1.1 1.5 2

Epidemic 3,7 ±0.0 3.7 ±0.0 3.8 ±0.1

Opportunistic 1 ±0.0 1 ±0.0 1 ±0.0

Random 44.5 ±0.7 55.9 ±1.0 69.8 ±2.2

Euclidean & Angle 3.3 ±0.0 3.2 ±0.0 3.2 ±0.0

Canberra 3.3 ±0.0 3.2 ±0.0 3.2 ±0.0

Matching 2.5 ±0.0 2.5 ±0.0 2.4 ±0.0

Table 3: Average route lengths

d = 1.1 d = 1.5 d = 2
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Table 4: Delay frequency compared to Epidemic

obtained with Epidemic to the delay we obtained with the
other algorithms. This was feasible since the traffic genera-
tion process can be identically reproduced in our simulator
with different routing protocols. Since it is not possible in
our case to find an algorithm having the same performance
as Epidemic, we wish to for an algorithm that approximates
its performance to the extent possible. We can observe that
the higher d is, the heavier is the tail of the distribution,
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d = 1.1 d = 1.5 d = 2
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Table 5: Average delay evolution by steps of 100 s

except for Euclidean and Angle, which show much better
behavior.

Table 5 shows the evolution of the average delay in seconds
over time, by steps of 100 s, for the different algorithms. Epi-
demic performs the best in terms of delay and route length.
It leads to very low delays that remain constant over time.
No bundles are delivered after 500 s because we stop gener-
ating traffic at that time. For the other algorithms, bundle
delay increases slightly before 500 s and then linearly with
time after that point because remaining bundles are waiting
in buffers to be delivered. When some bundles are diffi-
cult to deliver, it results in delivery in batches, such as for
Matching at time 1600 s for the case d = 1.1. Euclidean
and Angle seem to be the best solutions, resulting in low
delays and fast deliveries when the mobility patterns have
power-law distributions with d greater than 1.5.

3.2.2 With partial knowledge
Here, we analyze the performance and the limitations of

a scheme by which communication overhead is reduced by
having nodes only diffuse the main components of their mo-
bility patterns.

We ran simulations for the different similarity metrics
with values of d going from 1.1 to 2, and by taking into
account only the principal 1st, 2nd, 3rd, or 4th components
of a node’s mobility pattern.

metric d = 1.1 d = 1.5 d = 2

Euclidean l = 25 103.0 ±7.7 59.1 ±2.7 54.6 ±2.0

l = 4 106.2 ±4.3 60.0 ±2.4 54.5 ±2.3

l = 3 107.2 ±7.0 60.0 ±2.4 54.9 ±1.8

l = 2 107.2 ±7.0 62.2 ±2.3 57.2 ±1.9

l = 1 110.7 ±4.6 69.2 ±3.0 75.1 ±9.4

Angle l = 25 103.0 ±7.7 59.1 ±2.7 54.6 ±2.0

l = 4 106.2 ±4.3 60.0 ±2.4 54.5 ±2.3

l = 3 107.4 ±7.2 60.0 ±2.4 54.5 ±1.8

l = 2 107.4 ±7.2 62.3 ±2.2 57.2 ±1.9

l = 1 110.5 ±4.8 69.0 ±3.0 75.1 ±9.0

Canberra l = 25 104.8 ±4.6 113.4 ±10.4 245.0 ±41.2

l = 4 106.4 ±5.2 68.6 ±4.1 98.5 ±8.5

l = 3 106.4 ±7.5 68.6 ±4.1 80.2 ±3.3

l = 2 106.4 ±7.5 67.5 ±1.6 66.2 ±3.2

l = 1 109.9 ±4.5 69.9 ±2.8 75.2 ±9.4

Matching l = 25 118.5 ±5.7 189.5 ±12.1 352.9 ±56.0

l = 4 116.2 ±6.4 109.0 ±4.5 225.1 ±16.0

l = 3 113.3 ±4.8 109.0 ±4.5 168.8 ±8.8

l = 2 113.3 ±4.8 103.5 ±3.3 164.7 ±8.2

l = 1 112.7 ±4.1 136.8 ±6.3 265.6 ±10.7

Table 6: Average delay, with l the number of com-

ponents taken into account

Table 6 shows the average bundle delays and Table 7 the
average route lengths. The case with l = 25 in the tables
comes from the results obtained with full knowledge. We
provide separate results for Angle and Euclidean because
they are not exactly the same, even if they remain simi-
lar. We can see two kind of behaviors for the metrics. On
one hand, for Angle and Euclidean, the less information is
available, the higher is the delay. Route lengths remain the
same, except for l = 1 where it decreases a bit. On the
other hand, for Canberra and Matching the less information
we have, the lower are the delays (except for l = 1 where it
increases a bit) and the lower are the route lengths. These
results remain higher in term of delay than when nodes have
full knowledge of destination’s mobility patterns but show
that we can obtain a diminution of route lengths on average.
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This is especially the case for Matching where route lengths
are lower (up to 1 hop less) without leading to dramatic
delays for small values of d.

The fact that Canberra and Matching performs better in
most cases with low values of l than for l = 25 tends to con-
firm that these metrics were certainly not used at their best
in this study. Further analysis of these metrics is required.

metric d = 1.1 d = 1.5 d = 2

Euclidean l = 25 3.3 ±0.0 3.2 ±0.0 3.2 ±0.0

l = 4 3.3 ±0.0 3.2 ±0.0 3.2 ±0.0

l = 3 3.3 ±0.0 3.2 ±0.0 3.2 ±0.0

l = 2 3.3 ±0.0 3.2 ±0.0 3.2 ±0.1

l = 1 3.1 ±0.0 3.1 ±0.0 3.0 ±0.0

Angle l = 25 3.3 ±0.0 3.2 ±0.0 3.2 ±0.0

l = 4 3.3 ±0.0 3.2 ±0.0 3.2 ±0.0

l = 3 3.3 ±0.0 3.2 ±0.0 3.2 ±0.0

l = 2 3.3 ±0.0 3.2 ±0.0 3.2 ±0.1

l = 1 3.1 ±0.0 3.1 ±0.0 3.0 ±0.0

Canberra l = 25 3.3 ±0.0 3.2 ±0.0 3.2 ±0.0

l = 4 3.3 ±0.0 3.2 ±0.0 3.2 ±0.0

l = 3 3.3 ±0.0 3.2 ±0.0 3.2 ±0.0

l = 2 3.3 ±0.0 3.2 ±0.0 3.2 ±0.0

l = 1 2.9 ±0.0 2.9 ±0.0 3.0 ±0.0

Matching l = 25 2.5 ±0.0 2.5 ±0.0 2.4 ±0.0

l = 4 1.9 ±0.0 1.8 ±0.0 1.9 ±0.0

l = 3 1.7 ±0.0 1.8 ±0.0 1.8 ±0.0

l = 2 1.7 ±0.0 1.7 ±0.0 1.7 ±0.0

l = 1 1.5 ±0.0 1.5 ±0.0 1.5 ±0.0

Table 7: Average route lengths, with l the number

of components taken into account

4. CONCLUSION AND FUTURE WORK
The main contribution of this paper has been the defini-

tion of the concept of MobySpace, a generic routing scheme
using the formalism of a high-dimensional Euclidean space
constructed upon mobility patterns. We have shown, in a
scenario inspired by real-world observations, that the scheme
can applied to DTNs and that it can bring benefits, through
reduced bundle delay and through lower communication costs.
We believe that the scheme is sufficiently general that it
opens broad perspectives for DTN routing. Much work re-
mains to be done.

One possible line of future work concerns the impact of
the structure of the MobySpace, where by structure we mean
both the number and type of dimensions that define the
space, and the similarity function that is used to calculate
distances within the space. As described in Sec. 2.1, an al-
ternative set of dimensions might be based on the frequency
of contacts directly between pairs of nodes, rather than the
frequency of node visits to locations.

Another line of future work concerns the impact on per-
formance of different types of mobility patterns. Dynamic
patterns are of particular concern: what happens if mobil-
ity patterns are constantly evolving and shifting? How can
signaling keep pace with these changes, so that the mobility
patterns that are used for routing have sufficient predictive
power?

In this paper, we have assumed that nodes have full knowl-
edge of their mobility patterns. But typically we would ex-
pect that nodes will have to learn their mobility patterns
over time. The impact of imperfect estimation will need to
be taken into account.

The Euclidean spaces that we have studied here have a
known finite number of dimensions. In reality, the num-

ber of dimensions might not be known in advance, and
each node can have its own separate, and ever-growing,
list of dimensions. What semantics will allow nodes to ex-
change mutually-intelligible information about mobility pat-
terns under such circumstances?

In this work, we have considered that the essential char-
acteristics of a node’s mobility or contact patterns are fully
captured by the frequency with which nodes find themselves
in certain locations or the probability that they will be in
proximity to certain nodes. However, prior work [11], has
demonstrated the interest of capturing temporal information
as well. It is well known that network usage patterns fol-
low diurnal and weekly cycles. We could easily imagine two
nodes that visit the same locations with the same frequen-
cies, but on different days of the week. Though it still might
make sense to route to one node in order to reach the other,
especially if there is a relay node at the commonly visited
location, the Euclidean space description that we have pro-
vided does not capture this essential dissimilarity between
the nodes.

We can, however, imagine ways in which the dimensional
representation could capture temporal information as well.
For instance, visit patterns could be translated into the fre-
quential domain. Here, we mean frequency in cyclical terms,
not in terms of probability, as we have used the word else-
where in this paper. A node’s visits to a location could be
represented by a point on a frequency axis, capturing the
dominant frequency of those visits, and a point on a phase
axis. These axes could be added to the axis already de-
scribed, that represents the overall probability of visiting
the location.
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