
DTN Routing as a Resource Allocation Problem

Aruna Balasubramanian, Brian Neil Levine and Arun Venkataramani
Dept. of Computer Science, University of Massachusetts Amherst

Amherst, MA, USA
arunab@cs.umass.edu, brian@cs.umass.edu, arun@cs.umass.edu

ABSTRACT
Routing protocols for disruption-tolerant networks (DTNs)
use a variety of mechanisms, including discovering the meet-
ing probabilities among nodes, packet replication, and net-
work coding. The primary focus of these mechanisms is to
increase the likelihood of finding a path with limited informa-
tion, and so these approaches have only an incidental effect
on routing such metrics as maximum or average delivery
delay. In this paper, we present rapid, an intentional DTN
routing protocol that can optimize a specific routing metric
such as the worst-case delivery delay or the fraction of pack-
ets that are delivered within a deadline. The key insight is
to treat DTN routing as a resource allocation problem that
translates the routing metric into per-packet utilities which
determine how packets should be replicated in the system.

We evaluate rapid rigorously through a prototype deployed
over a vehicular DTN testbed of 40 buses and simulations
based on real traces. To our knowledge, this is the first paper
to report on a routing protocol deployed on a real DTN
at this scale. Our results suggest that rapid significantly
outperforms existing routing protocols for several metrics.
We also show empirically that for small loads RAPID is
within 10% of the optimal performance.

Categories and Subject Descriptors
C.2 [Computer Communication Network]: Network
Protocols— Routing Protocols

General Terms
Design, Performance

Keywords
DTN, deployment, mobility, routing, utility

This work was supported in part by NSF awards CNS-
0133055 and CNS-0519881.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’07, August 27–31, 2007, Kyoto, Japan.
Copyright 2007 ACM 978-1-59593-713-1/07/0008 ...$5.00.

1. INTRODUCTION
Disruption-tolerant networks (DTNs) enable transfer of

data when mobile nodes are connected only intermittently.
Applications of DTNs include large-scale disaster recovery
networks, sensor networks for ecological monitoring [36],
ocean sensor networks [28, 24], vehicular networks [26, 6],
and projects such as TIER [2], Digital Study Hall [15], and
One Laptop Per Child [1] to benefit developing nations.
Intermittent connectivity can be a result of mobility, power
management, wireless range, sparsity, or malicious attacks.
The inherent uncertainty about network conditions makes
routing in DTNs a challenging problem.

The primary focus of many existing DTN routing protocols
is to increase the likelihood of finding a path with extremely
limited information. To discover such a path, a variety
of mechanisms are used including estimating node meeting
probabilities, packet replication, network coding, placement
of stationary waypoint stores, and leveraging prior knowledge
of mobility patterns. Unfortunately, the burden of finding
even one path is so great that existing approaches have
only an incidental rather than an intentional effect on such
routing metrics as worst-case delivery latency, average delay,
or percentage of packets delivered. This disconnect between
application needs and routing protocols hinders deployment
of DTN applications. Currently, it is difficult to drive the
routing layer of a DTN by specifying priorities, deadlines, or
cost constraints. For example, a simple news and information
application is better served by maximizing the number of
news stories delivered before they are outdated, rather than
maximizing the number of stories eventually delivered.

In this paper, we present a resource allocation protocol
for intentional DTN (rapid) routing, which we designed to
explicitly optimize an administrator-specified routing metric.
rapid routes a packet by opportunistically replicating it until
a copy reaches the destination. rapid translates the routing
metric to per-packet utilities that determine at every transfer
opportunity if the marginal utility of replicating a packet
justifies the resources used.

rapid loosely tracks network resources through a control
plane to assimilate a local view of global network state. To
this end, rapid uses an in-band control channel to exchange
network state information among nodes using a fraction of
the available bandwidth. rapid’s control channel builds on
insights from previous work, e.g., Jain et al. [19] suggest
that DTN routing protocols that use more knowledge of
network conditions perform better, and Burgess et al. [6]
show that flooding acknowledgments improves delivery rates
by removing useless packets from the network. rapid nodes

373

use the control channel to exchange additional metadata that
includes the number and location of replicas of a packet
and the average size of past transfers. Even though this
information is delayed and inaccurate, the mechanisms in
rapid’s control plane combined with its utility-driven repli-
cation algorithms significantly improve routing performance
compared to existing approaches.

We have built and deployed rapid on a vehicular DTN
testbed, DieselNet [6], that consists of 40 buses covering a
150 square-mile area around Amherst, MA. Each bus carries
802.11b radios and a moderately resourceful computer, and
the buses intermittently connect as they pass one another.
We collected 58 days of performance traces of the rapid
deployment. To our knowledge, this is the first paper to
report on a DTN routing protocol deployed at this scale.
Similar testbeds have deployed only flooding as a method
of packet propagation [36]. We also conduct a simulation-
based evaluation using real traces to stress-test and compare
various protocols. To ensure a fair comparison to other DTN
protocols (that we did not deploy), we collected traces of
the bus-to-bus meeting duration and bandwidth during the
58 days. We then constructed a trace-driven simulation of
rapid, and we show that the simulator provides performance
results that are are within 1% of the real measurements with
95% confidence. We use this simulator to compare rapid
to four existing routing protocols [23, 31, 6] and random
routing. We also compare the protocols using synthetic
mobility models.

To show the generality of rapid, we evaluate three sepa-
rate routing metrics: minimizing average delay, minimizing
worst-case delay, and maximizing the number of packets
delivered before a deadline. Our experiments using trace-
driven and synthetic mobility scenarios show that rapid
significantly outperforms four other routing protocols. For
example, in trace-driven experiments under moderate-to-high
loads, rapid outperforms the second-best protocol by about
20% for all three metrics, while also delivering 15% more
packets for the first two metrics. With a priori mobility
information and moderate-to-high loads, rapid outperforms
random replication by about 50% for all metrics while de-
livering 40% more packets. We also compare rapid to an
optimal protocol and show empirically that rapid performs
within 10% of optimal for low loads. All experiments include
the cost of rapid’s control channel.

In sum, we demonstrate the feasibility of an intentional
routing approach for DTNs. Our contributions include the
following.

• A utility-driven DTN routing protocol, rapid, instan-
tiated with three different routing metrics: minimizing
average delay, minimizing maximum delay, and min-
imizing the number of packets that miss a deadline
(Sections 3 and 4).

• Deployment and evaluation of rapid on a vehicular
testbed to show performance in real scenarios and to
validate our trace-driven simulator (Section 5).

• Comprehensive experiments using a 58-day trace that
show that rapid not only outperforms four other pro-
tocols for each routing metric, but also consistently
delivers a larger fraction of packets (Section 6).

• Hardness results to substantiate rapid’s heuristic ap-
proach, which prove that online algorithms without
complete future knowledge and with unlimited compu-
tational power, or computationally limited algorithms

with complete future knowledge, can be arbitrarily far
from optimal (Section 3 and Appendix).

2. RELATED WORK

Replication versus Forwarding.
We classify related existing DTN routing protocols as

those that replicate packets and those that forward only a
single copy. Epidemic routing protocols replicate packets at
transfer opportunities hoping to find a path to a destination.
However, naive flooding wastes resources and can severely
degrade performance. Proposed protocols attempt to limit
replication or otherwise clear useless packets in various ways:
(i) using historic meeting information [12, 7, 6, 23]; (ii) re-
moving useless packets using acknowledgments of delivered
data [6]; (iii) using probabilistic mobility information to
infer delivery [30]; (iv) replicating packets with a small prob-
ability [35]; (v) using network coding [34] and coding with
redundancy [18]; and (vi) bounding the number of replicas
of a packet [31, 30, 25].

In contrast, forwarding routing protocols maintain at most
one copy of a packet in the network [19, 20, 33]. Jain et
al. [19] propose a forwarding algorithm to minimize the
average delay of packet delivery using oracles with varying
degrees of future knowledge. Our deployment experience
suggests that, even for a scheduled bus service, implementing
the simplest oracle is difficult; connection opportunities are
affected by many factors in practice including weather, radio
interference, and system failure. Furthermore, we present
formal hardness results and empirical results to quantify the
impact of not having complete knowledge.

Jones et al. [20] propose a link-state protocol based on
epidemic propagation to disseminate global knowledge, but
use a single path to forward a packet. Shah et al. [29] and
Spyropoulos et al. [33] present an analytical framework for
the forwarding-only case assuming a grid-based mobility
model. They subsequently extend the model and propose a
replication-based protocol, Spray and Wait [31]. The consen-
sus appears to be [31] that replicating packets can improve
performance (and security [5]) over just forwarding, but risk
degrading performance when resources are limited.

Incidental versus Intentional.
Our position is that most existing schemes only have an

incidental effect on desired performance metrics, including
commonly evaluated metrics such as average delay or deliv-
ery probability. Their theoretical intractability in general
makes the effect of a particular protocol design decision on
the performance of a given resource constrained network
scenario unclear. For example, several existing DTN routing
algorithms [31, 30, 25, 6] route packets using the number of
replicas as the heuristic, but the effect of replication varies
with different routing metrics. Spray and Wait [31] routes
to reduce delay metric, but it does not take into account
bandwidth or storage constraints. In contrast, routing in
rapid is intentional with respect to a given performance
metric. rapid explicitly calculates the effect of replication on
the routing metric while accounting for resource constraints.

Resource Constraints.
rapid also differs from most previous work in its assump-

tions regarding resource constraints, routing policy, and mo-

374

Problem Storage Bandwidth Routing Previous work (and mobility)
P1 Unlimited Unlimited Replication Epidemic [25], Spray and Wait [31]: Constraint in the form of

channel contention (Grid-based synthetic)
P2 Unlimited Unlimited Forwarding Modified Djikstra’s algorithm Jain et al. [19] (simple graph),

MobySpace [22] (Powerlaw)
P3 Finite Unlimited Replication Davis et al. [12] (Simple partitioning synthetic), SWIM [30] (Ex-

ponential), MV [7] (Community-based synthetic), Prophet [23]
(Community-based synthetic)

P4 Finite Finite Forwarding Jones et al. [20] (AP traces), Jain et al. [19] (Synthetic DTN topol-
ogy)

P5 Finite Finite Replication This paper (Vehicular DTN traces, exponential, and powerlaw
meeting probabilities, testbed deployment), MaxProp [6] (Vehicular
DTN traces)

Table 1: A classification of some related work into DTN routing scenarios

bility patterns. Table 1 shows a taxonomy of many existing
DTN routing protocols based on assumptions about band-
width available during transfer opportunities and the storage
carried by nodes; both are either finite or unlimited. For each
work, we state in parentheses the mobility model used. rapid
is a replication-based algorithm that assumes constraints on
both storage and bandwidth (P5) — the most challenging
and most practical problem space.

P1 and P2 are important to examine for valuable insights
that theoretical tractability yields but are impractical for
real DTNs with limited resources. Many studies [23, 12, 7,
30] analyze the case where storage at nodes is limited, but
bandwidth is unlimited (P3). This scenario may happen
when the radios used and the duration of contacts allow
transmission of more data than can be stored by the node.
However, we find this scenario to be uncommon — typically
storage is inexpensive and energy efficient. Trends suggest
that high bitrate radios will remain more expensive and
energy-intensive than storage [13]. We describe how the basic
rapid protocol can be naturally extended to accommodate
storage constraints. Finally, for mobile DTNs, and especially
vehicular DTNs, transfer opportunities are short-lived [17,
6].

We were unable to find other protocols in P5 except Max-
Prop [6] that assume limited storage and bandwidth. How-
ever, it is unclear how to optimize a specific routing metric
using MaxProp, so we categorize it as an incidental routing
protocol. Our experiments indicate that rapid significantly
outperforms MaxProp for each metric that we evaluate.

Some theoretical works [37, 32, 30] derive closed-form ex-
pressions for average delay and number of replicas in the
system as a function of the number of nodes and mobility
patterns. Although these analyses contributed to important
insights in the design of rapid, their assumptions about mo-
bility patterns or unlimited resources were, in our experience,
too restrictive to be applicable to practical settings.

3. THE RAPID PROTOCOL

3.1 System model
We model a DTN as a set of mobile nodes. Two nodes

transfer data packets to each other when within communica-
tion range. During a transfer, the sender replicates packets
while retaining a copy. A node can deliver packets to a desti-
nation node directly or via intermediate nodes, but packets
may not be fragmented. There is limited storage and transfer
bandwidth available to nodes. Destination nodes are assumed

to have sufficient capacity to store delivered packets, so only
storage for in-transit data is limited. Node meetings are
assumed to be short-lived.

Formally, a DTN consists of a node meeting schedule and
a workload. The node meeting schedule is a directed multi-
graph G = (V, E), where V and E represent the set of nodes
and edges, respectively. Each directed edge e between two
nodes represents a meeting between them, and it is annotated
with a tuple (te, se), where t is the time of the meeting and s
is the size of the transfer opportunity. The workload is a set
of packets P = {(u1, v1, s1, t1), (u2, v2, s2, t2), . . .}, where the
ith tuple represents the source, destination, size, and time
of creation (at the source), respectively, of packet i. The
goal of a DTN routing algorithm is to deliver all packets
using a feasible schedule of packet transfers, where feasible
means that the total size of packets transfered during each
opportunity is less than the size of the opportunity, always
respecting storage constraints.

In comparison to Jain et al.[19] who model link properties
as continuous functions of time, our model assumes discrete
short-lived transfers; this makes the problem analytically
more tractable and characterizes many practical DTNs well.

3.2 The case for a heuristic approach
Two fundamental reasons make the case for a heuristic

approach to DTN routing. First, the inherent uncertainty of
DTN environments rules out provably efficient online routing
algorithms. Second, computing optimal solutions is hard
even with complete knowledge about the environment. Both
hardness results formalized below hold even for unit-sized
packets and unit-sized transfer opportunities and assume no
storage restriction.

Theorem 1. Let ALG be a deterministic online DTN
routing algorithm with unlimited computational power.

• (a) If ALG has complete knowledge of a workload of n
packets, but not of the schedule of node meetings, then
it is Ω(n)-competitive with an offline adversary with
respect to the fraction of packets delivered.

• (b) If ALG has complete knowledge of the meeting
schedule, but not of the packet workload, then it can
deliver at most a third of packets compared to an optimal
offline adversary.

Theorem 2. Given complete knowledge of node meetings
and the packet workload a priori, computing a routing schedule
that is optimal with respect to the number of packets delivered
is NP-hard with an Ω(

p
(n)) lower bound on approximability.

375

D(i) Packet i’s expected delay = T (i) + A(i)
T (i) Time since creation of i
a(i) Random variable that determines the

remaining time to deliver i
A(i) Expected remaining time = E[a(i)]
MXZ Random variable that determines inter-

meeting time between nodes X and Z

Table 2: List of commonly used variables.

The proofs are outlined in the appendix and formal proofs
are presented in a technical report [3]. The hardness results
naturally extend to the average delay metric for both the
online as well as computationally limited algorithms.

Finally, traditional optimization frameworks for routing [14]
and congestion control [21] based on fluid models appear dif-
ficult to extend to DTNs due to the inherently high feedback
delay, uncertainty about network conditions, and the dis-
crete nature of transfer opportunities that are more suited
for transferring large “bundles” rather than small packets.

3.3 RAPID design
rapid models DTN routing as a utility-driven resource

allocation problem. A packet is routed by replicating it until
a copy reaches the destination. The key question is: given
limited bandwidth, how should packets be replicated in the
network so as to optimize a specified routing metric? rapid
derives a per-packet utility function from the routing metric.
At a transfer opportunity, it replicates a packet that locally
results in the highest increase in utility.

Consider a routing metric such as minimize average delay
of packets, the running example used in this section. The
corresponding utility Ui of packet i is the negative of the
expected delay to deliver i, i.e., the time i has already spent
in the system plus the additional expected delay before i is
delivered. Let δUi denote the increase in Ui by replicating i
and si denote the size of i. Then, rapid replicates the packet
with the highest value of δUi/si among packets in its buffer;
in other words, the packet with the highest marginal utility.

In general, Ui is defined as the expected contribution of i to
the given routing metric. For example, the metric minimize
average delay is measured by summing the delay of packets.
Accordingly, the utility of a packet is its expected delay. Thus,
rapid is a heuristic based on locally optimizing marginal
utility, i.e., the expected increase in utility per unit resource
used. rapid replicates packets in decreasing order of their
marginal utility at each transfer opportunity.

The marginal utility heuristic has some desirable properties.
The marginal utility of replicating a packet to a node is low
when (i) the packet has many replicas, or (ii) the node is
a poor choice with respect to the routing metric, or (iii)
the resources used do not justify the benefit. For example,
if nodes meet each other uniformly, then a packet i with 6
replicas has lower marginal utility of replication compared
to a packet j with just 2 replicas. On the other hand, if the
peer is unlikely to meet j’s destination for a long time, then
i may take priority over j.

rapid has three core components: a selection algorithm,
an inference algorithm, and a control channel. The selection
algorithm is used to determine which packets to replicate at
a transfer opportunity given their utilities. The inference

Protocol rapid(X, Y):

1. Initialization: Obtain metadata from Y about
packets in its buffer and metadata Y collected
over past meetings (detailed in Section 4.2).

2. Direct delivery: Deliver packets destined to Y in
decreasing order of their utility.

3. Replication: For each packet i in node X’s buffer

(a) If i is already in Y ’s buffer (as determined
from the metadata), ignore i.

(b) Estimate marginal utility, δUi, of replicating
i to Y .

(c) Replicate packets in decreasing order of δUi
si

.

4. Termination: End transfer when out of radio range
or all packets replicated.

algorithm is used to estimate the utility of a packet given the
routing metric. The control channel propagates the necessary
metadata required by the inference algorithm.

3.4 The selection algorithm
The rapid protocol executes when two nodes are within

radio range and have discovered one another. The protocol
is symmetric; without loss of generality, and describes how
node X determines which packets to transfer to node Y (refer
to the box marked Protocol rapid).

rapid also adapts to storage restrictions for in-transit data.
If a node exhausts all available storage, packets with the
lowest utility are deleted first as they contribute least to
overall performance. However, a source never deletes its own
packet unless it receives an acknowledgment for the packet.

3.5 Inference algorithm
Next, we describe how Protocol rapid can support

specific metrics using an algorithm to infer utilities. Table 2
defines the relevant variables.

3.5.1 Metric 1: Minimizing average delay

To minimize the average delay of packets in the network
we define the utility of a packet as

Ui = −D(i) (1)

since the packet’s expected delay is its contribution to the
performance metric. Thus, the protocol attempts to greedily
replicate the packet whose replication reduces the delay by
the most among all packets in its buffer.

3.5.2 Metric 2: Minimizing missed deadlines

To minimize the number of packets that miss their dead-
lines, the utility is defined as the the probability that the
packet will be delivered within its deadline:

Ui =

P (a(i) < L(i)− T (i)), L(i) > T (i)
0, otherwise

(2)

where L(i) is the packet life-time. A packet that has missed
its deadline can no longer improve performance and is thus
assigned a value of 0. The marginal utility is the improvement
in the probability that the packet will be delivered within

376

Algorithm Estimate Delay(X, Q, Z):
Node X with a set of packets Q to destination Z esti-
mates the time, A(i), until packet i ∈ Q is delivered to
Z as follows:

1. Sort packets in Q in decreasing order of T (i). Let
b(i) be the sum of sizes of packets that precede i,
and B the expected transfer opportunity in bytes
between X and Z (refer Figure 1).

2. X by itself requires db(i)/Be meetings with Z to
deliver i. Compute the random variable MX(i) for
the corresponding delay as

MX(i) = MXZ + MXZ + . . . db(i)/Be times (4)

3. Let X1, . . . , Xk ⊇ X be the set of nodes possessing
a replica of i. Estimate remaining time a(i) as

a(i) = min(MX1(i), . . . , MXk (i)) (5)

4. Expected delay D(i) = T (i) + E[a(i)]

its deadline, so the protocol replicates the packet that yields
the highest improvement among packets in its buffer.

3.5.3 Metric 3: Minimizing maximum delay

To minimize the maximum delay of packets in the network,
we define the utility Ui as

Ui =

−D(i), D(i) ≥ D(j) ∀j ∈ S
0, otherwise

(3)

where S denotes the set of all packets in X’s buffer. Thus,
Ui is the negative expected delay if i is a packet with the
maximum expected delay among all packets held by Y . So,
replication is useful only for the packet whose delay is max-
imum. For the routing algorithm to be work conserving,
rapid computes utility for the packet whose delay is cur-
rently the maximum; i.e., once a packet with maximum
delay is evaluated for replication, the utility of the remaining
packets is recalculated using Eq. 3.

4. ESTIMATING DELIVERY DELAY
How does a rapid node estimate expected delay in Eqs. 1

and 3, or the probability of packet delivery within a deadline
in Eq. 2? The expected delivery delay is the minimum
expected time until any node with the replica of the packet
delivers the packet; so a node needs to know which other
nodes possess replicas of the packet and when they expect
to meet the destination.

To estimate expected delay we assume that the packet is
delivered directly to the destination, ignoring the effect of
further replication. This estimation is nontrivial even with
an accurate global snapshot of system state. For ease of
exposition, we first present rapid’s estimation algorithm as
if we had knowledge of the global system state, and then we
present a practical distributed implementation.

4.1 Algorithm Estimate_Delay
Algorithm Estimate Delay works as follows. Each node

X maintains a separate queue of packets Q destined to
each node Z sorted in decreasing order of T (i) or time since
creation — the order in which they would be delivered directly

B bytes (Average transfer
size)

b(i) bytes (Sum of packets
 before i)

Sorted
list of packets
destined to Z

i

Figure 1: Position of packet i in a queue of
packets destined to Z.

a2

b3

c1Node W Node X Node Y

(a) Packet destined to Z buffered
at different nodes

a1b1

b2d1

d2

Node W Node X Node Y

(b) Delay dependancies between
packets destined to node Z

b

d

a
b
d

a
b
c

Figure 2: Delay dependencies between packets
destined to Z buffered in different nodes.

(in Step 2 of protocol rapid). Step 2 in Estimate Delay
computes the delay distribution for delivery of the packet
by X, as if X were the only node carrying a replica of i.
Step 3 computes the minimum across all replicas of the
corresponding delay distributions, as the remaining time a(i)
is the time until any one of those nodes meets Z.

Estimate Delay makes a simplifying independence as-
sumption that does not hold in general. Consider Figure 2(a),
an example showing the positions of packet replicas in the
queues of different nodes; packets with the same letter and
different indices are replicas. All packets have a common
destination Z and each queue is sorted by T (i). Assume that
the size of each transfer opportunity is one packet.

Packet b may be delivered in two ways: (i) if W meets Z;
(ii) one of X and Y meets Z and then one of X and Y meet
Z again. These delay dependencies can be represented using
a dependency graph as illustrated in Fig 2(b). A vertex
corresponds to a packet replica. An edge from one node
to another indicates a dependency between the delays of
the corresponding packets. Recall that MXY is the random
variable that represents the meeting time between X and Y .

Estimate Delay ignores all the non-vertical dependencies.
For example, it estimates b’s delivery time distribution as

min(MWZ , MXZ + MXZ , MY Z + MY Z),

whereas the distribution is actually

min(MWZ , min(MXZ , MY Z) + min(MXZ , MY Z)).

Although, in general, the independence assumption can
arbitrarily inflate delay estimates1, it makes our implemen-
tation (i) simple — computing an accurate estimate is much
more complex especially when transfer opportunities are not
unit-sized as above — and (ii) distributed — in practice,
rapid does not have global view, but Estimate Delay can
be implemented using a thin in-band control channel.

1Pathological cases are discussed in our technical report [3].

377

4.1.1 Exponential distributions
We walk through the distributed implementation of Es-

timate Delay for a scenario where the inter-meeting time
between nodes is exponentially distributed. Further, sup-
pose all nodes meet according to a uniform exponential
distribution with mean time 1/λ. In the absence of band-
width restrictions, the expected delivery delay when there
are k replicas is the mean meeting time divided by k, i.e.,
P(a(i) < t) = 1 − e−kλt and A(i) = 1

kλ
. (Note that the

minimum of k i.i.d. exponentials is also an exponential with
mean 1/k of the mean of the i.i.d exponentials [8].)

However, when transfer opportunities are limited, the
expected delay depends on the packet’s position in nodes’
buffers. In Step 2 of Estimate Delay, the time for some
node X to meet the destination db(i)/Be times is described
by a gamma distribution with mean 1

λ
· db(i)/Be.

If packet i is replicated at k nodes, Step 3 computes the
delay distribution a(i) as the minimum of k gamma variables.
We do not know of a closed form expression for the minimum
of gamma variables. Instead, if we assume that the time
taken for a node to meet the destination b(i)/B times is
exponential with the same mean 1

λ
· db(i)/Be, we can again

estimate a(i) as the minimum of k exponentials as follows.
Let n1(i), n2(i), . . . , nk(i) be the number of times each of

the k nodes respectively needs to meet the destination to
deliver i directly. Then A(i) is computed as:

P(a(i) < t) = 1− e
−(λ

n1(i)+ λ
n2(i)+...+ λ

nk(i))t
(6)

A(i) =
1

λ
n1(i)

+ λ
n2(i)

+ . . . + λ
nk(i)

(7)

When the meeting time distributions between nodes are
non-uniform, say with means 1/λ1, 1/λ2 . . . 1/λk respectively,

then A(i) = (λ1
n1(i)

+ λ2
n2(i)

+ . . . + λk
nk(i)

)−1.

4.1.2 Unknown mobility distributions
To estimate mean inter-node meeting times in the Diesel-

Net testbed, every node tabulates the average time to meet
every other node based on past meeting times. Nodes ex-
change this table as part of metadata exchanges (Step 1 in
Protocol rapid). A node combines the metadata into a
meeting-time adjacency matrix and the information is up-
dated after each transfer opportunity. The matrix contains
the expected time for two nodes to meet directly, calculated
as the average of past meetings.

Node X estimates E(MXZ), the expected time to meet
Z, using the meeting-time matrix. E(MXZ) is estimated as
the expected time taken for X to meet Z in at most h hops.
(Unlike uniform exponential mobility models, some nodes
in the trace never meet directly.) For example, if X meets
Z via an intermediary Y , the expected meeting time is the
expected time for X to meet Y and then Y to meet Z in 2
hops. In our implementation we restrict h = 3. When two
nodes never meet, even via three intermediate nodes, we set
the expected inter-meeting time to infinity. Several DTN
routing protocols [6, 23, 7] use similar techniques to estimate
meeting probability among peers.

Let replicas of packet i destined to Z reside at nodes
X1, . . . , Xk. Since we do not know the meeting time distribu-
tions, we simply assume they are exponentially distributed.

Then from Eq. 7, the expected delay to deliver i is

A(i) = [

kX
j=1

1

E(MXjZ) · nj(i)
]−1 (8)

We use an exponential distribution because bus meeting
times in the testbed are very difficult to model. Buses change
routes several times in one day, the inter-bus meeting dis-
tribution is noisy, and we found them hard to model even
using mixture models.Approximating meeting times as expo-
nentially distributed makes delay estimates easy to compute
and performs well in practice.

4.2 Control channel
Previous studies [19] have shown that as nodes have the

benefit of more information about global system state and
future from oracles, they can make significantly better routing
decisions. We extend this idea to practical DTNs where
no oracle is available. To this end, rapid nodes gather
knowledge about the global system state by disseminating
metadata using a fraction of the transfer opportunity.

rapid uses an in-band control channel to exchange ac-
knowledgments for delivered packets as well as metadata
about every packet learnt from past exchanges. For each
encountered packet i, rapid maintains a list of nodes that
carry the replica of i, and for each replica, an estimated time
for direct delivery. Metadata for delivered packets is deleted
when an ack is received.

For efficiency, a rapid node maintains the time of last
metadata exchange with its peers. The node only sends
information about packets whose information changed since
the last exchange, which reduces the size of the exchange
considerably. A rapid node sends the following information
on encountering a peer.

• Average size of past transfer opportunities;

• Expected meeting times with nodes;

• List of packets delivered since last exchange;

• For each of its own packets, the updated delivery delay
estimate based on current buffer state;

• Information about other packets if modified since last
exchange with the peer.

When using the control channel, nodes have only an imperfect
view of the system. The propagated information may be
stale due to change is number of replicas, changes in delivery
delays, or if the packet is delivered but acknowledgments
have not propagated. Nevertheless, our experiments confirm
that (i) this inaccurate information is sufficient for rapid to
achieve significant performance gains over existing protocols
and (ii) the overhead of metadata itself is minimal.

5. IMPLEMENTATION ON A VEHICULAR
DTN TESTBED

We implemented and deployed rapid on our vehicular
DTN testbed, DieselNet [6] (http://prisms.cs.umass.edu/
dome), consisting of 40 buses, of which a subset is on the
road each day. The implementation allowed us to meet the
following two objectives. First, the routing protocol is a first
step towards deploying realistic DTN applications on the
testbed. Second, the deployment is subject to some events
that are not perfectly modeled in the simulation, including
delays caused by computation or the wireless channel.

378

Each bus in DieselNet carries a small-form desktop com-
puter, 40 GB of storage, and a GPS device. The buses
operate a 802.11b radio that scans for other buses 100 times
a second and an 802.11b access point (AP) that accepts
incoming connections. Once a bus is found, a connection is
created to the remote AP. (It is likely that the remote bus
then creates a connection to the discovered AP, which our
software merges into one connection event.) The connection
lasts until the radios are out of range. Burgess et al. [6]
describes the DieselNet testbed in more detail.

5.1 Deployment
Buses in DieselNet send messages using protocol rapid

in Section 3, computing the metadata as described in Sec-
tion 4.2. We generated packets of size 1 KB periodically
on each bus with an exponential inter-arrival time. The
destinations of the packets included only buses that were
scheduled to be on the road, which avoided creation of many
packets that could never be delivered. We did not provide
the buses information about the location or route of other
buses on the road. We set the default packet generation rate
to 4 packets per hour generated by each bus for every other
bus on the road; since the number of buses on the road at
any time varies, this is the simplest way to express load. For
example, when 20 buses are on the road, the default rate is
1,520 packets per hour.

During the experiments, the buses logged packet gener-
ation, packet delivery, delivery delay, meta-data size, and
the total size of the transfer opportunity. Buses transfered
random data after all routing was complete in order to mea-
sure the capacity and duration of each transfer opportunity.
The logs were periodically uploaded to a central server using
open Internet APs found on the road.

5.2 Performance of deployed RAPID
We measured the routing performance of rapid on the

buses from Feb 6, 2007 until May 14, 20072. The measure-
ments are tabulated in Table 3. We exclude holidays and
weekends since almost no buses were on the road, leaving 58
days of experiments. rapid delivered 88% of packets with
an average delivery delay of about 91 minutes. We also note
that overhead due to meta-data accounts for less than 0.02%
of the total available bandwidth and less than 1.7% of the
data transmitted.

5.3 Validating trace-driven simulator
In the next section, we evaluate rapid using a trace-driven

simulator. The simulator takes as input a schedule of node
meetings, the bandwidth available at each meeting, and a
routing algorithm. We validated our simulator by comparing
simulation results against the 58-days of measurements from
the deployment. In the simulator, we generate packets under
the same assumptions as the deployment, using the same
parameters for exponentially distributed inter-arrival times.

Figure 3 shows the average delay characteristics of the real
system and the simulator. Delays measured using the simula-
tor were averaged over the 30 runs and the error-bars show a
95% confidence interval. From those results and further anal-
ysis, we find with 95% confidence that the simulator results
are within 1% of the implementation measurement of average
delay. The close correlation between system measurement

2The traces are available at http://traces.cs.umass.edu.

Avg. buses scheduled per day 19
Avg. total bytes transfered per day 261.4 MB
Avg. number of meetings per day 147.5
Percentage delivered per day 88%
Avg. packet delivery delay 91.7 min
Meta-data size/ bandwidth 0.002
Meta-data size/ data size 0.017

Table 3: Deployment of Rapid: Average daily statis-
tics

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 10 20 30 40 50 60

A
ve

ra
ge

 D
el

ay
 (

m
in

)

Day

Real
Simulation

Figure 3: Trace: Average delay for 58 days of rapid
real deployment compared to simulation of rapid us-
ing traces

and simulation increases our confidence in the accuracy of
the simulator.

6. EVALUATION
The goal of our evaluations is to show that, unlike existing

work, rapid can improve performance for customizable met-
rics. We evaluate rapid using three metrics: minimize max-
imum delay, minimize average delay, and minimize missed
deadlines. In all cases, we found that rapid significantly
outperforms existing protocols and also performs close to
optimal for our workloads.

6.1 Experimental setup
Our evaluations are based on a custom event-driven sim-

ulator, as described in the previous section. The meeting
times between buses in these experiments are not known a
priori. All values used by rapid, including average meeting
times, are learned during the experiment.

We compare rapid to five other routing protocols: Max-
Prop [6], Spray and Wait [31], Prophet [23], Random, and
Optimal. In all experiments, we include the cost of rapid’s
in-band control channel for exchanging metadata.

MaxProp operates in a storage- and bandwidth-constrained
environment, allows packet replication, and leverages delivery
notifications to purge old replicas; of recent related work, it
is closest to rapid’s objectives. Random replicates randomly
chosen packets for the duration of the transfer opportunity.
Spray and Wait restricts the number of replications of a
packets to L, where L is calculated based on the number of
nodes in the network. For our simulations, we implemented
the binary Spray and Wait and set3 L = 12. We implemented

3We set this value based on consultation with authors and

379

Power law Trace-driven
Number of nodes 20 max of 40
Buffer size 100 KB 40 GB
Average transfer opp.
size

100 KB given by real trans-
fers among buses

Duration 15 min 19 hours each trace
Size of a packet 1 KB 1 KB
Packet generation rate 50 sec mean 1 hour
Delivery deadline 20 sec 2.7 hours

Table 4: Experiment parameters

Prophet with parameters Pinit = 0.75, β = 0.25 and γ = 0.98
(parameters based on values used in [23]).

We also compare rapid to Optimal, the optimal routing
protocol that provides an upper bound on performance. We
also perform experiments where mobility is modeled as a
power law distribution. Previous studies [9, 22] have sug-
gested that DTNs among people have a skewed, power law
inter-meeting time distribution. The default parameters used
for all the experiments are tabulated in Table 4. The pa-
rameters for power law mobility model is different from the
trace-driven model because the performance between the two
models are not comparable.

Each data point is averaged over 10 runs; in the case of
trace-driven results, the results are averaged over 58 traces.
Each of the 58 days is a separate experiment. In other words,
packets that are not delivered by the end of the day are lost.
In all experiments, MaxProp, rapid and Spray and Wait
performed significantly better than Prophet, and the latter is
not shown in the graphs for clarity. In all trace experiments,
Prophet performed worse than the three routing protocols
for for all loads and all metrics.

6.2 Results based on testbed traces

6.2.1 Comparison with existing routing protocols
Our experiments show that rapid consistently outperforms

MaxProp, Spray and Wait and Random. We increased the
load in the system up to 40 packets per hour per destination,
when Random delivers less than 50% of the packets.

Figure 4 shows the average delay of delivered packets
using the four protocols for varying loads when rapid’s
routing metric is set to minimize average delay (Eq. 1).
When using rapid, the average delay of delivered packets
is significantly lower than MaxProp, Spray and Wait and
Random. Moreover, rapid also consistently delivers a greater
fraction of packets as shown in Figure 5.

Figure 6 shows rapid’s performance when the routing
metric is set to minimize maximum delay (Eq. 3) and similarly
Figure 7 shows results when the metric is set to maximize
the number of packets delivered within a deadline (Eq. 2).

We note that among MaxProp, Spray and Wait and Ran-
dom, MaxProp delivers the most number of packets, but
Spray and Wait has marginally lower average delay than
MaxProp. rapid significantly outperforms the three protocol
for all metrics because of its intentional design.

Standard deviation and similar measures of variance are
not appropriate for comparing the mean delays as each
bus takes a different geographic route. So, we performed
a paired t-test [8] to compare the average delay of every

using LEMMA 4.3 in [31] with a = 4.

source-destination pair using rapid to the average delay of
the same source-destination pair using MaxProp (the second
best performing protocol). In our tests, we found p-values al-
ways less than 0.0005, indicating the differences between the
means reported in these figures are statistically significant.

6.2.2 Metadata exchange
We allow rapid to use as much bandwidth at the start

of a transfer opportunity for exchanging metadata as it re-
quires. To see if this approach was wasteful or beneficial, we
performed experiments where we limited the total metadata
exchanged. Figure 8 shows the average delay performance of
rapid when metadata is limited as a percentage of the total
bandwidth. The results show that performance increases as
the limit is removed and that the best performance results
when there is no restriction on metadata at all. The perfor-
mance of rapid with complete metadata exchange improves
by 20% compared to when no metadata is exchanged. The
metadata in this experiment is represented as a percentage
of available bandwidth.

In the next experiment, we analyze total metadata as a
percentage of data. In particular, we increase the load to
75 packets per destination per hour to analyze the trend in
terms of bandwidth utilization, delivery rate and metadata.
Figure 9 shows this trend as load increases. The bandwidth
utilization is about 35% for the load of 75 packets per hour
per destination, while delivery rate is only about 65%. This
suggests that the performance drops even though the network
is under-utilized, and it is because of the bottleneck links in
the network. The available bandwidth varies significantly
across transfer opportunities in our bus traces [6].

We also observe that metadata increases to about 4% of
data for high loads. This is an order of magnitude higher
than the metadata observed as a fraction of bandwidth,
again because of the poor channel utilization. The average
metadata exchange per contact is proportional to the load
and the channel utilization. However, metadata enables
efficient routing and helps remove copies of packets that
are already delivered, increasing the overall performance of
rapid. Moving from 1-KB to 10-KB packets will reduce
rapid’s metadata overhead by another order of magnitude.

6.2.3 Hybrid DTN with thin continuous connectivity
In this section, we compare the performance of rapid using

an instant global control channel for exchanging metadata as
opposed to the default (delayed) in-band control channel.

Figure 10 shows the average delay of rapid when using an
in-band control channel compared to a global channel. We
observe that the average delay decreases by up to 20 minutes
when using a global channel. Similarly, from Figure 11
we observe that the percentage packets delivered within
a deadline increases by an average of 20% using a global
channel. This observation suggests that rapid’s performance
can benefit further by using more control information.

One interpretation of the global channel is the use of rapid
as a hybrid DTN where all control traffic goes over a low-
bandwidth, long-range radio such as XTEND [4]. A hybrid
DTN will use a high-cost, low-bandwidth channel for control
whenever available and low-cost high-bandwidth delayed
channel for data. In our experiments, we assumed that the
global channel is instant. While this may not be feasible
in practice, the results give an upper bound on rapid’s
performance when accurate channel information is available.

380

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 5 10 15 20 25 30 35 40

A
vg

 d
el

ay
 (

m
in

)

Number of packets generated in 1 hour per destination

Rapid
MaxProp

Spray and Wait
Random

Figure 4: (Trace) Average Delay:
RAPID has up to 20% lower delay
than MaxProp and up to 35% lower
delay than Random

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 5 10 15 20 25 30 35 40

%
 d

el
iv

er
ed

Number of packets generated in 1 hour per destination

Rapid
MaxProp

Spray and Wait
Random

Figure 5: (Trace) Delivery Rate:
RAPID delivers up to 14% more
than MaxProp, 28% than Spray and
Wait and 45% than Random

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 0 5 10 15 20 25 30 35 40

M
ax

 D
el

ay
 (

m
in

)

Number of packets generated in 1 hour per destination

Rapid
MaxProp

Spray and Wait
Random

Figure 6: (Trace) Max Delay: Max-
imum delay of RAPID is up to 90
min lower than MaxProp, Spray and
Wait, and Random

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 5 10 15 20 25 30 35 40

%
 d

el
iv

er
ed

 w
ith

in
 d

ea
dl

in
e

Number of packets generated in 1 hour per destination

Rapid
MaxProp

Spray and Wait
Random

Figure 7: (Trace) Delivery within
deadline: RAPID delivers up to
21% more than MaxProp, 24% than
Spray and Wait, 28% than Random

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

A
ve

ra
ge

 D
el

ay
 (

m
in

)

Percentage Metadata (of the available bandwidth)

Load: 6 packet per hour per node
Load: 12 packet per hour per node
Load: 20 packet per hour per node

Figure 8: (Trace) Control channel
benefit: Average delay performance
improves as more metadata is al-
lowed to be exchanged

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80
 0

 0.2

 0.4

 0.6

 0.8

 1

P
er

ce
nt

ag
e

D
el

iv
er

y
ra

te

Number of packets generated in 1 hour per destination

Meta information/RAPID data
% channel utilization

Delivery rate

Figure 9: (Trace) Channel utiliza-
tion: As load increases, delivery rate
decreases to 65% but channel utiliza-
tion is only about 35%

6.2.4 Comparison with Optimal

We compare rapid to Optimal, which is an upper bound on
the performance. To obtain the optimal delay, we formulate
the DTN routing problem as an Integer Linear Program
(ILP) optimization problem when the meeting times between
nodes are precisely know. The optimal solution assumes that
the propagation delay of all links are equal and that node
meetings are known in advance. We present a formulation
of this problem in our technical report [3]. Our evaluations
use the CPLEX solver [11]. Because the solver grows in
complexity with the number of packets, these simulations are
limited to only 6 packets per hour per destination. Jain et
al. [19] solve a more general DTN routing problem by allowing
packets to be fragmented across links and assigning non-zero
propagation delays on the links, however, this limited the
size of the network they could evaluate even more. Our ILP
objective function minimizes delay of all packets, where the
delay of undelivered packets is set to time the packet spent
in the system. Accordingly, we add the delay of undelivered
packets when presenting the results for rapid and MaxProp.

Figure 12 presents the average delay performance of Opti-
mal, rapid, and MaxProp. We observe that for small loads,
the performance of rapid using the in-band control chan-
nel is within 10% of the optimum performance, while using
MaxProp the delays are about 22% from the optimal. rapid
using a global channel performs within 6% of optimal.

6.2.5 Evaluation of rapid components
rapid is comprised of several components that all con-

tribute to performance. We ran experiments to study the

value added by each component. Our approach is to compare
subsets of the full rapid, cumulatively adding components
from Random. The components are (i) Random with acks:
propagation of delivery acknowledgments; and (ii) rapid-
local: using rapid but nodes exchange metadata about
only packets in their own buffers.

Figure 13 shows the performance of different components
of rapid when the routing metric is set to minimize average
delay. From the figure we observe that using acknowledg-
ments alone improves performance by an average of 8%. In
our previous work, MaxProp [6], we show empirically that
propagating acknowledgments clears buffers, avoids exchange
of already delivered packets and improving performance. In
addition, rapid-local provides a further improvement of
10% on average even though metadata exchange is restricted
to packets in the node’s local buffer. Allowing all metadata
to flow further improves the performance by about 11%.

6.3 Results from synthetic mobility models
Next, we use a power law mobility model to compare the

performance of rapid to MaxProp, Random, and Spray and
Wait. When mobility is modeled using power law, two nodes
meet with an exponential inter-meeting time, but the mean of
the exponential distribution is determined by the popularity
of the nodes. For the 20 nodes, we randomly set a popularity
value of 1 to 20, with 1 being most popular. The mean of
the power law mobility model is set to 0.3 seconds and is
skewed for each pair of nodes according to their popularity.

Figure 14 shows the maximum delay of packets when the
load is varied (i.e., rapid is set to use Eq. 3 as a metric).

381

 0

 20

 40

 60

 80

 100

 120

 140

 0 5 10 15 20 25 30 35 40

A
vg

 d
el

ay
 (

m
in

)

Number of packets generated in 1 hour per destination

In-band control channel
Instant global control channel

Figure 10: (Trace) Global channel:
Average delay of RAPID decreases
by up to 20 minutes using instant
global control channel

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 5 10 15 20 25 30 35 40

%
 d

el
iv

er
ed

 w
ith

in
 d

ea
dl

in
e

Number of packets generated in 1 hour per destination

In-band control channel
Instant global control channel

Figure 11: (Trace) Global channel:
Packets delivered within deadline in-
creases by about 15% using instant
global control channel

 0

 20

 40

 60

 80

 100

 120

 0 1 2 3 4 5 6

A
vg

 d
el

ay
 w

ith
 u

nd
el

iv
er

ed
 (

m
in

)

Number of packets generated in 1 hour per destination

Optimal
Rapid: Instant global control channel

Rapid: In-band control channel
Maxprop

Figure 12: (Trace) Comparison with
Optimal : Average delay of RAPID
is within 10% of Optimal for small
loads

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 5 10 15 20 25 30 35 40

A
vg

 d
el

ay
 (

m
in

)

Number of packets generated in 1 hour per destination

Rapid
Rapid: Local

Random: With Acks
Random

Figure 13: (Trace) RAPID Compo-
nents: Flooding acks decreases aver-
age delay by about 8% and RAPID
further decreases average delay by
about 30% over Random

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 10 20 30 40 50 60 70 80

M
ax

 D
el

ay
 (

se
c)

Number of packets generated in 50 sec per destination

Rapid
MaxProp

Spray and Wait
Random

Figure 14: (Powerlaw) Max delay:
RAPID’s max delay is about 30%
lower than MaxProp, 35% lower
than Spray and Wait and 45% lower
than Random

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 50 100 150 200 250 300

%
 d

el
iv

er
ed

 w
ith

in
 d

ea
dl

in
e

Available storage (KB)

Rapid
MaxProp

Spray and Wait
Random

Figure 15: (Powerlaw) Constrained
buffer size: RAPID delivers about
20% more packets than MaxProp,
and 45% more packets than Spray
and Wait and Random

rapid reduces maximum delay by over 30% compared to
the other protocols. For both the traces and the synthetic
mobility, the performance of rapid is significantly higher
than MaxProp, Spray and Wait, and Random for the maxi-
mum delay metric. The reason is MaxProp prioritizes new
packets; older, undelivered packets will not see service as load
increases. Similarly, Spray and Wait does not give preference
to older packets. However, rapid specifically prioritizes older
packets to reduce maximum delay.

Figure 15 shows how constrained buffers varied from 10 KB
to 280 KB affect the delivery deadline metric for a fixed
load of 20 packets per node per destination every 50 seconds.
rapid is able to best manage limited buffers to deliver packets
within a deadline. When storage is restricted, MaxProp
deletes packets that are replicated most number of times,
while Spray and Wait and Random deletes packets randomly.
rapid, when set to maximizing number of packets delivered
within a deadline, deletes packets that are most likely to miss
the deadline and is able to improve performance significantly.

We observed similar trends for other routing metrics for
increasing load and decreasing buffer size and when the node
meeting time was modeled as an exponential distribution.
Those results are presented in our technical report [3].

6.4 Limitations
The above experiments show that rapid performs well

from many viewpoints. However, there are limitations to our
approach. The heuristics we use are sub-optimal solutions
and although they seek to maximize specific utilities, we
can offer no performance guarantees. Our estimations of

delay are based on simple, tractable distributions. Finally,
we note that our implementation of rapid shows that the
protocol can be deployed efficiently and effectively; however,
in other DTN scenarios or testbeds, mobility patterns may
be more difficult to learn. In future work, we believe a more
sophisticated estimation of delay will improve our results,
perhaps bringing us closer to guarantees of performance. The
release of an implementation of rapid will enable us to enlist
others to deploy rapid on their DTNs, diversifying results
to other scenarios.

7. CONCLUSIONS
Previous work in DTN routing protocols has seen only

incidental performance improvement from various routing
mechanisms and protocol design choices. In contrast, we
have proposed a routing protocol for DTNs that intention-
ally maximizes the performance of a specific routing metric.
Our protocol, rapid, treats DTN routing as a resource allo-
cation problem, making use of an in-band control channel to
propagated metadata. Although our approach is heuristic,
we have proven that the general DTN routing protocol lacks
sufficient information in practice to solve optimally. More-
over, we have shown that even when complete knowledge is
available, solving the DTN routing problem optimally is NP-
hard. Our deployment of rapid in a DTN testbed illustrates
that our approach is realistic and effective. We have shown
through trace-driven simulation using 58 days of testbed mea-
surements that rapid yields significant performance gains
over many existing protocols.

382

Acknowledgments
We thank Mark Corner, John Burgess, and Brian Lynn for
helping build and maintain DieselNet, Ramgopal Mettu for
helping develop the NP-hardness proof, and Erik Learned-
Miller and Jérémie Leguay for feedback on earlier drafts.

8. REFERENCES
[1] One laptop per child. http://www.laptop.org.

[2] TIER Project, UC Berkeley.
http://tier.cs.berkeley.edu/.

[3] A. Balasubramanian, B. N. Levine, and A. Venkataramani.
DTN Routing as a Resource Allocation Problem. Technical
Report 07-37, UMass Amherst, 2007.

[4] N. Banerjee, M. D. Corner, and B. N. Levine. An
Energy-Efficient Architecture for DTN Throwboxes. In Proc.
IEEE Infocom, May 2007.

[5] J. Burgess, G. Bissias, M. D. Corner, and B. N. Levine.
Surviving Attacks on Disruption-Tolerant Networks without
Authentication. In Proc. ACM Mobihoc, September 2007.

[6] J. Burgess, B. Gallagher, D. Jensen, and B. N. Levine.
MaxProp: Routing for Vehicle-Based Disruption- Tolerant
Networks. In Proc. IEEE Infocom, April 2006.

[7] B. Burns, O. Brock, and B. N. Levine. MV Routing and
Capacity Building in Disruption Tolerant Networks. In Proc.
IEEE Infocom, pages 398–408, March 2005.

[8] G. Casella and R. L. Berger. Statistical Inference. Second
Edition. Duxbury, 2002.

[9] A. Chaintreau, P. Hui, J. Crowcroft, C. Diot, R. Gass, and
J. Scott. Impact of Human Mobility on the Design of
Opportunistic Forwarding Algorithms. In Proc. IEEE
Infocom, May 2006.

[10] C. Chekuri, S. Khanna, and F. B. Shepherd. An O(
p

(n))
Approximation and Integrality Gap for Disjoint Paths and
Unsplittable Flow. Theory of Computing, 2(7):137–146,
2006.

[11] CPLEX. http://www.ilog.com.

[12] J. Davis, A. Fagg, and B. N. Levine. Wearable Computers
and Packet Transport Mechanisms in Highly Partitioned Ad
hoc Networks. In Proc. IEEE ISWC, pages 141–148,
October 2001.

[13] P. Desnoyers, D. Ganesan, H. Li, M. Li, and P. Shenoy.
PRESTO: A Predictive Storage Architecture for Sensor
Networks. In Proc. USENIX HotOS, June 2005.

[14] R. Gallager. A Minimum Delay Routing Algorithm Using
Distributed Computation. In IEEE Trans. on
Communications, volume 25, pages 73–85, Jan 1977.

[15] N. Garg, S. Sobti, J. Lai, F. Zheng, K. Li,
A. Krishnamurthy, and R. Wang. Bridging the Digital
Divide. ACM Trans. on Storage, 1(2):246–275, May 2005.

[16] V. Guruswami, S. Khanna, R. Rajaraman, B. Shepherd, and
M. Yannakakis. Near-Optimal Hardness Results and
Approximation Algorithms for Edge-Disjoint Paths and
Related Problems. In Proc. ACM STOC, pages 19–28, 1999.

[17] B. Hull et al. CarTel: A Distributed Mobile Sensor
Computing System. In Proc. ACM SenSys, pages 125–138,
Oct. 2006.

[18] S. Jain, M. Demmer, R. Patra, and K. Fall. Using
Redundancy to Cope with Failures in a Delay Tolerant
Network. In Proc. ACM Sigcomm, pages 109–120, 2005.

[19] S. Jain, K. Fall, and R. Patra. Routing in a Delay Tolerant
Network. In Proc. ACM Sigcomm, pages 145–158, Aug.
2004.

[20] E. Jones, L. Li, and P. Ward. Practical Routing in
Delay-Tolerant Networks. In Proc. ACM Chants Workshop,
pages 237–243, Aug. 2005.

[21] F. Kelly, A. Maulloo, and D. Tan. Rate Control for
Communication Networks: Shadow Prices, Proportional
Fairness and Stability. In J. Op. Res. Society, volume 49,
pages 237–252, 1998.

[22] J. Leguay, T. Friedman, and V. Conan. DTN Routing in a
Mobility Pattern Space. In Proc. ACM Chants Workshop,
pages 276–283, Aug. 2005.

[23] A. Lindgren, A. Doria, and O. Schelén. Probabilistic
Routing in Intermittently Connected Networks. In Proc.
SAPIR Workshop, pages 239–254, Aug. 2004.

[24] A. Maffei, K. Fall, and D. Chayes. Ocean Instrument
Internet. In Proc. AGU Ocean Sciences Conf., Feb 2006.

[25] W. Mitchener and A. Vadhat. Epidemic Routing for
Partially Connected Ad hoc Networks. Technical Report
CS-2000-06, Duke Univ., 2000.

[26] J. Ott and D. Kutscher. A Disconnection-Tolerant Transport
for Drive-thru Internet Environments. In Proc. IEEE
INFOCOM, pages 1849–1862, Mar. 2005.

[27] C. Papadimitriou. Computational Complexity. Addison
Wesley, 1994.

[28] J. Partan, J. Kurose, and B. N. Levine. A Survey of
Practical Issues in Underwater Networks. In Proc. ACM
WUWNet, pages 17–24, Sept. 2006.

[29] R. C. Shah, S. Roy, S. Jain, and W. Brunette. Data MULEs:
Modeling a Three-tier Architecture for Sparse Sensor
Networks. In Proc. IEEE SNPA, pages 30–41, May 2003.

[30] T. Small and Z. Haas. Resource and Performance Tradeoffs
in Delay-Tolerant Wireless Networks. In Proc. ACM WDTN,
pages 260–267, Aug. 2005.

[31] T. Spyropoulos, K. Psounis, and C. S. Raghavendra. Spray
and Wait: An Efficient Routing Scheme for Intermittently
Connected Mobile Networks. In Proc. ACM WDTN, pages
252–259, Aug. 2005.

[32] T. Spyropoulos, K. Psounis, and C. S. Raghavendra.
Performance analysis of mobility-assisted routing. In ACM
MobiHoc, pages 49–60, May 2006.

[33] T. Spyropoulos and K. Psounis and C. Raghavendra.
Single-copy Routing in Intermittently Connected Mobile
Networks. In IEEE SECON, October 2004.

[34] J. Widmer and J.-Y. Le Boudec. Network Coding for
Efficient Communication in Extreme Networks. In Proc.
ACM WDTN, pages 284–291, Aug. 2005.

[35] Y.-C. Tseng and S.-Y. Ni and Y.-S. Chen and J.-P. Sheu.
The Broadcast Storm Problem in a Mobile Ad hoc Network.
Springer Wireless Networks, 8(2/3):153–167, 2002.

[36] P. Zhang, C. M. Sadler, S. A. Lyon, and M. Martonosi.
Hardware Design Experiences in ZebraNet. In Proc. ACM
SenSys, pages 227–238, Nov. 2004.

[37] X. Zhang, G. Neglia, J. Kurose, and D. Towsley.
Performance Modeling of Epidemic Routing. In Proc. IFIP
Networking, May 2006.

APPENDIX
Packets and transfer opportunities are unit-sized and storage
is unlimited in all proofs outlined below. Formal proofs are
presented in our technical report [3].

Theorem 1(a). If ALG has complete knowledge of a
workload consisting of n packets, but not of the schedule of
node meetings, then it is Ω(n)-competitive with an offline
adversary with respect to the fraction of packets delivered.

Proof outline. We construct an offline adversary, ADV,
that incrementally generates a node meeting schedule based
on the actions of the online algorithm ALG at each step.
We show how ADV can construct a node meeting schedule
such that ADV can deliver all packets while ALG, without
prior knowledge of the schedule, can deliver at most 1 packet.
Consider the schedule illustrated in Figure 16 where arrows
represent meetings between the corresponding nodes. There
are a total of 2n meetings — the source S at time T1 meets
n intermediate nodes u1, . . . , un that each subsequently meet
a unique destination from among v1, . . . , vn at time T2. S

383

Packets
P = {p1,p2,...,pn}
pi destined to vi

Intermediaries

u1

u2

un

un-1

Source S

Destinations

v1

v2

vn

vn-1

T1 T2

Figure 16: Theorem 1(a) construction: Solid arrows
represent node meetings ALG known a priori while
dotted arrows represent meetings ADV generates
and reveals subsequently.

Source S

Packets
p1,p2

v1

v2

v'1

v'2

p1

p2

p'2

p'1T1 T2

Basic gadget

Figure 17: Theorem 1(b) basic gadget: Solid arrows
represent node meetings ALG knows a priori while
dotted squiggly arrows represent packets ADV gen-
erates and reveals subsequently.

must deliver n packets p1, . . . , pn destined respectively to
v1, . . . , vn.

ALG is effectively forced to guess the permutation corre-
sponding to the latter set of meetings between u1, . . . , un

and v1, . . . , vn. The best strategy for ALG is to replicate one
packet to all nodes in u1, . . . , un, and this strategy allows it
to deliver exactly one packet. ADV on the other hand knows
the latter n meetings a priori and can therefore route all n
packets to their respective destinations.

Theorem 1(b). If ALG has complete knowledge of the
meeting schedule, but not of the packet workload, then it can
deliver at most a third of packets compared to an optimal
offline adversary.

Proof outline. We construct an offline adversary, ADV,
that incrementally generates a packet workload by observing
ALG’s transfers at each step. Consider the scenario in Fig-
ure 17, which we refer to as the basic gadget. The source S
initially has two packets p1, p2 that it must deliver respec-
tively to destinations v1 and v2 via the intermediate nodes
v′1 and v′2. Each solid arrow represents a unit-sized transfer
opportunity between the corresponding nodes.

ADV can use this gadget to force ALG to drop two packets
by creating two additional packets p′1 and p′2 while ADV itself
delivers all four packets as follows. If ALG transfers p1 to
v′1 and p2 to v′2 at time T1, then ADV generates two more

packets at time T2: p′2 at v′1 destined to v2 and p′1 at v′2
destined to v1. ALG is forced to drop one of the two packets
at both v′1 and v′2. Instead, if ALG chooses to transfer p1 to
v′2 and p2 to v′1, ADV simply chooses the opposite strategy
putting ALG in the same predicament.

The basic gadget can be extended by composing two ad-
ditional basic gadgets to force ALG to deliver at most 2

5
of

the packets. We show in the full proof that by constructing
a gadget of depth i, ADV can force ALG to deliver at most
a i/(3i− 1) fraction of packets.

It is an open question whether there exists a constant-
competitive online algorithm that knows the complete node
meeting schedule but not the packet workload. The proofs
above suggest, but do not prove, that not knowing the sched-
ule is more damning than not knowing the workload.

Theorem 2. Given complete knowledge of node meetings and
the packet workload a priori, computing a routing schedule
that is optimal with respect to the number of packets delivered
is NP-hard with an Ω(

p
(n)) lower bound on approximability.

Proof outline. We show that the DTN routing prob-
lem given complete knowledge (of both the node meeting
schedule and packet workload) is NP-hard by reducing the
edge-disjoint paths (EDP) problem to the DTN routing prob-
lem.

The EDP problem for a DAG is known to be NP-hard [10].
The EDP problem is: given a DAG G = (V, E) and source-
destination pairs {(r1, d1)...(rs, ds)}, compute the largest
subset of the source-destination pairs with edge-disjoint paths
between them. The decision version of the EDP problem
is: is there a subset of k source-destination pairs with edge-
disjoint paths between them? We reduce this problem to the
decision version of the DTN routing problem.

To reduce the EDP problem, G = (V, E), to the DTN
routing problem (refer Section 3.1), we topologically sort the
DAG G in polynomial time and label the edges of the DAG
such that the labels strictly increase along the edges. The la-
bel function l maps every edge to a natural number. We map
the vertices V to the nodes in the DTN network. We map
each edge e = (u, v) to the transfer opportunity (u, v, 1, l(e)).
I.e., nodes u and v have a unit-sized transfer opportunity
at time l(e). We map the source destination pairs (ri, di)
to a packet pi from source ri to destination di, with unit
size and created at time 0. Since the transfer opportunities
are unit-sized, at most one packet can be transfered using
each opportunity. The solution to the DTN routing problem
transfers pi from ui to vi using a series of opportunities; the
path formed by the transfers is a valid edge-disjoint path
between the corresponding source-destination pairs ri and
di in the DAG G of the EDP problem. Using this mapping,
we reduce EDP to the DTN routing problem.

The reduction above is a true reduction in the following
sense: each successfully delivered DTN packet corresponds
to an edge-disjoint path and vice-versa. Thus, the optimal
solution for one exactly corresponds to an optimal solution
for the other. We can show formally that this reduction is an
L-reduction [27]. Consequently, the lower bound Ω(n1/2−ε)
known for the hardness of approximating the EDP prob-
lem [16] holds for the DTN routing problem as well.

384

