WARNING:
JavaScript is turned OFF. None of the links on this concept map will
work until it is reactivated.
If you need help turning JavaScript On, click here.
This Concept Map, created with IHMC CmapTools, has information related to: Unit 5 by-group, Standard Normal curve has σ = 1, <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <mtext> z = </mtext> <mfrac> <mrow> <mtext> x- </mtext> <munderover> <mtext> x </mtext> <none/> <mtext> _ </mtext> </munderover> </mrow> <mtext> s </mtext> </mfrac> </mrow> </math> for sample data, Normal curve Distribution is significant because Statistical inference test rely on it, standard scores (z scores) used to find Area given the raw score, standard scores (z scores) used to find Raw score given the area, Normal curve Distribution characteristics are Represent % of scores under curve, Normal curve Distribution characteristics are Unimode, measure of position such as standard scores (z scores), Represent % of scores under curve help find measure of position, Normal curve Distribution characteristics are Extends to +/- infinty, Normal curve Distribution equesttion <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <mtext> y = </mtext> <mfrac> <mtext> N </mtext> <mrow> <mtext> σ </mtext> <msqrt> <mtext> 2π </mtext> </msqrt> </mrow> </mfrac> <mmultiscripts> <mtext> e </mtext> <none/> <mfrac> <mrow> <mtext> - </mtext> <mmultiscripts> <mtext> (x- μ) </mtext> <none/> <mtext> 2 </mtext> </mmultiscripts> </mrow> <mrow> <mtext> 2 </mtext> <mmultiscripts> <mtext> σ </mtext> <none/> <mtext> 2 </mtext> </mmultiscripts> </mrow> </mfrac> </mmultiscripts> </mrow> </math>, Standard Normal curve has μ = 0, Distributions types are Theoretical Distribution, Empirical Distribution resulted from observation of variates, Distributions types are Empirical Distribution, standard scores (z scores) equestion <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <mtext> z = </mtext> <mfrac> <mtext> x- μ </mtext> <mtext> σ </mtext> </mfrac> </mrow> </math>, Normal curve Distribution is significant because variables distributions approximate it, <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <mtext> z = </mtext> <mfrac> <mtext> x- μ </mtext> <mtext> σ </mtext> </mfrac> </mrow> </math> for population data, Area given the raw score found by <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <mtext> z = </mtext> <mfrac> <mtext> x- μ </mtext> <mtext> σ </mtext> </mfrac> </mrow> </math>, Raw score given the area found by x = μ+ σz