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Introduction

The transgenerational transmission of the
wisdom of elders via storytelling is as old
as humanity itself. During the Middle Ages
and Renaissance, the Craft Guilds had well-
specified procedures for the transmission of
knowledge, and indeed gave us the develop-
mental scale that is still widely used: initi-
ate, novice, apprentice, journeyman, expert,
and master (Hoffman, 1998). Based on
interviews and observations of the work-
place, Denis Diderot (along with 140 oth-
ers, including Emile Voltaire) created one of
the great works of the Enlightenment, the 17

volume Encyclopedie (Diderot, 1751–1772),
which explained many “secrets” – the knowl-
edge and procedures in a number of trade-
crafts. The emergent science of psychology
of the 1700s and 1800s also involved research

that, in hindsight, might legitimately be
regarded as knowledge elicitation (KE). For
instance, a number of studies of reasoning
were conducted in the laboratory of Wil-
helm Wundt, and some of these involved
university professors as the research partic-
ipants (Militello & Hoffman, forthcoming).
In the decade prior to World War I, the stage
was set in Europe for applied and industrial
psychology; much of that work involved the
systematic study of proficient domain practi-
tioners (see Hoffman & Deffenbacher, 1992).

The focus of this chapter is on a more
recent acceleration of research that involves
the elicitation and representation of expert
knowledge (and the subsequent use of the
representations, in design). We lay out recent
historical origins and rationale for the work,
we chart the developments during the era
of first-generation expert systems, and then
we proceed to encapsulate our modern
understanding of and approaches to the
elicitation, representation, and sharing of
expert knowledge. Our emphasis in this
chapter is on methods and methodological
issues.

2 03
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Where This Topic Came From

The Era of Expert Systems

The era of expert systems can be dated from
about 1971, when Edward Feigenbaum and
his colleagues (Feigenbaum, Buchanan, &
Lederberg, 1971) created a system in which
a computable knowledge base of domain
concepts was integrated with an inference
engine of procedural (if-then) rules. This
“expert system” was intended to capture
the skill of expert chemists regarding the
interpretation of mass spectrograms. Other
seminal systems were MYCIN (Shortliffe,
1976), for diagnosing bacterial infections and
PROSPECTOR (Duda, Gaschnig, & Hart,
1979), for determining site potential for geo-
logical exploration.

It seemed to take longer for computer
scientists to elicit knowledge from experts
than to write the expert system software.
This “knowledge acquisition bottleneck”
became a salient problem (see Hayes-Roth,
Waterman, & Lenat, 1983). It was widely
discussed in the computer science commu-
nity (e.g., McGraw & Harbison-Briggs, 1989;
Rook & Croghan, 1989). An obvious sugges-
tion was that computer systems engineers
might be trained in interview techniques
(Forsyth & Buchanan, 1989), but the bottle-
neck also spawned the development of auto-
mated knowledge acquisition “shells.” These
were toolkits for helping domain experts
build their own prototype expert systems
(for a bibliography, see Hoffman, 1992).

By use of a shell, experts entered their
expert knowledge about domain concepts
and reasoning rules directly into the com-
puter as responses to questions (Gaines &
Boose, 1988). Neale (1988) advocated “elim-
inating the knowledge engineer and getting
the expert to work directly with the com-
puter” (p. 136) because human-on-human
KE methods (interviews, protocol analysis)
were believed to place an “unjustified faith
in textbook knowledge and what experts say
they do” (p. 135).

The field of expert systems involved
literally thousands of projects in which
expert knowledge was elicited (or acquired)

(Hoffman, 1992), but serious problems soon
arose. For example, software brittleness
(breakdowns in handling atypical cases)
and explanatory insufficiency (a printout
of cryptic procedural rules fails to clearly
express to non-programmers the reasoning
path that was followed by the software)
were quickly recognized as troublesome (for
reviews that convey aspects of the history of
this field, see David, Krivine, & Simmons,
1993 ; Raeth, 1990). At the same time, there
was a burgeoning of interest in expertise on
the part of cognitive psychologists.

Expertise Studies in Psychology

The application of cognitive science and
the psychology of learning to topics in
instructional design led to studies of the
basis for expertise and knowledge organi-
zation at different stages during acquisi-
tion of expertise (Lesgold, 1994 ; Means &
Gott, 1988). In the early 1970s, a group
of researchers affiliated with the Learn-
ing Research and Development Center at
the University of Pittsburgh and the Psy-
chology Department at Carnegie-Mellon
University launched a number of research
projects on issues of instructional design in
both educational contexts (e.g., elementary-
school-level mathematics word problems;
college-level physics problems) and techni-
cal contexts of military applications (e.g.,
problem solving by electronics techni-
cians) (e.g., Chi, Feltovich, & Glaser, 1981)
Lesgold et al., 1981. The research empha-
sized problem-solving behaviors decom-
posed as “learning hierarchies” (Gagné &
Smith, 1962), that is, sequences of learn-
ing tasks arranged according to difficulty and
direction of transfer.

Interest in instructional design quickly
became part of a larger program of inves-
tigation that generated several foundational
notions about the psychology of expertise
(see Glaser, 1987). A number of researchers,
apparently independently of one another,
began to use the term “cognitive task anal-
ysis” both to refer to the process of iden-
tifying the knowledge and strategies that
make up expertise for a particular domain
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and task as well as to distinguish the pro-
cess from so-called behavioral task analysis
(e.g., Glaser et al., 1985 ; see Schraagen, this
volume). A stream of psychological research
evolved that shifted emphasis from stud-
ies with naive, college-aged “subjects” who
participated in artificial tasks using artificial
materials (in service of control and manipu-
lation of variables) to studies in which highly
skilled, domain-smart participants engaged
in tasks that were more representative of
the complexity of the “real world” in which
they practiced their craft (Chi, Glaser, &
Farr, 1988; Hoffman, 1992 ; Knorr-Cetina &
Mulkay, 1983 ; Shanteau, 1992).

Investigators began to shift their atten-
tion from cataloging biases and limitations
of human reasoning in artificial and sim-
ple problems (e.g., statistical reasoning puz-
zles, syllogistic reasoning puzzles) to the
exploration of human capabilities for mak-
ing decisions, solving complex problems, and
forming mental models (Gentner & Stevens,
1983 ; Klahr & Kotovsky, 1989; Klein &
Weitzenfeld, 1982 ; Scribner, 1984 ; Sternberg
& Frensch, 1991). The ethnographic research
of Lave (1988) and Hutchins (1995) revealed
that experts do not slavishly conduct “tasks”
or adhere to work rules or work proce-
dures but instead develop informal heuris-
tic strategies that, though possibly inefficient
and even counterintuitive, are often remark-
ably robust, effective, and cognitively eco-
nomical. One provocative implication of this
work is that expertise results in part from a
natural convergence on such strategies dur-
ing engagement with the challenges posed
by work.

Studies spanned a wide gamut of top-
ics, some of which seem more traditional
to academia (e.g., physics problem solving),
but many that would traditionally not be fair
game for the academic experimental psy-
chologist (e.g., expertise in manufacturing
engineering, medical diagnosis, taxicab driv-
ing, bird watching, grocery shopping, natural
navigation). Mainstream cognitive psychol-
ogy took something of a turn toward appli-
cations (see Barber, 1988), and today the
phrase “real world” seems to no longer
require scare quotes (see Hollnagel, Hoc, &

Cacciabue, 1996), although there are rem-
nants of debate about the utility and sci-
entific foundations of research that is con-
ducted in uncontrolled or non-laboratory
contexts (e.g., Banaji & Crowder, 1989;
Hoffman & Deffenbacher, 1993 ; Hoffman &
Woods, 2000).

The Early Methods Palette

Another avenue of study involved attempts
to address the knowledge-acquisition bot-
tleneck, the root cause of which lay in the
reliance on unstructured interviews by
the computer scientists who were build-
ing expert systems (see Cullen & Bryman,
1988). Unstructured interviews gained early
acceptance as a means of simultaneously
“bootstrapping” the researcher’s knowledge
of the domain, and establishing rapport
between the researcher and the expert. Nev-
ertheless, the bottleneck issue encouraged a
consideration of methods from psychology
that might be brought to bear to widen the
bottleneck, including methods of structured
interviewing (Gordon & Gill, 1997). Inter-
views could get their structure from pre-
planned probe questions, from archived test
cases, and so forth.

In addition to interviewing, the researcher
might look at expert performance while the
expert is conducting their usual or “famil-
iar” task and thinking aloud, with their
knowledge and reasoning revealed subse-
quently via a protocol analysis (see Chi
et al., 1981; Ericsson & Simon, 1993 , Chap-
ter 38, this volume). In addition, one
could study expert performance at “con-
trived tasks,” for example, by withholding
certain information about the case at hand
(limited-information tasks), or by manip-
ulating the way the information is pro-
cessed (constrained-processing tasks). In the
“method of tough cases” the expert is asked
to work on a difficult test case (perhaps
gleaned from archives) with the idea that
tough cases might reveal subtle aspects of
expert reasoning, or particular subdomain
or highly specialized knowledge, or aspects
of experts’ metacognitive skills, for exam-
ple, the ability to reason about their own
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reasoning or create new procedures or con-
ceptual categories “on the fly.”

Empirical comparisons of KE meth-
ods, conducted in the late 1980s, were
premised on the speculation that different
methods might yield different “kinds” of
knowledge – the “differential access hypoth-
esis.” (These studies are reviewed at greater
length in Hoffman et al., 1995 , and Shadbolt
& Burton, 1990.) Hoffman worked with
experts at aerial photo interpretation for
terrain analysis, and Shadbolt and Burton
worked with experts at geological and
archaeological classification. Both research
programs employed a number of knowledge-
elicitation methods, and both evaluated the
methods in terms of their yield (i.e., the
number of informative propositions or deci-
sion/classification rules elicited as a function
of the task time).

The results were in general agreement.
Think-aloud problem solving, combined
with protocol analysis, proved to be rela-
tively time-consuming, having a yield of less
than one informative proposition per total
task minute. Likewise, an unstructured inter-
view yielded less than one informative pro-
position per total task minute. A structured
interview, a constrained processing task, and
an analysis of tough cases were the most effi-
cient, yielding between one and two infor-
mative propositions per total task minute.

The results from the studies by and
Shadbolt and Burton and also showed that
there was considerable overlap of knowl-
edge elicited by two of the main techniques
they used – a task in which domain con-
cepts were sorted into categories and a task
in which domain concepts were rated on a
number of dimensions. Both of the tech-
niques elicited information about domain
concepts and domain procedures. Hoffman
as well as Shadbolt and Burton concluded
that interviews need to be used in conjunc-
tion with ratings and sorting tasks because
contrived techniques elicit specific knowl-
edge and may not yield an overview of the
domain knowledge.

An idea that was put aside is that the
goal of KE should be to “extract” expert
knowledge. It is far more appropriate to refer

to knowledge elicitation as a collaborative
process, sometimes involving “discovery” of
knowledge (Clancey, 1993 ; Ford & Adams-
Webber, 1992 ; Knorr-Cetina, 1981; LaFrance,
1992). According to a transactional view,
expert knowledge is created and maintained
through collaborative and social processes,
as well as through the perceptual and cog-
nitive processes of the individual. By this
view, a goal for cognitive analysis and design
is to promote development of a workplace
in which knowledge is created, shared, and
maintained via natural processes of com-
munication, negotiation, and collaboration
(Lintern, Diedrich, & Serfaty, 2002).

The foundation for this newer perspec-
tive and set of research goals had been laid
by the work of Gary Klein and his associates
on the decision making of proficient practi-
tioners in domains such as clinical nursing
and firefighting (See Ross, Shafer, & Klein,
Chapter 23 ; Klein et al., 1993). They had
laid out some new goals for KE, including
the generation of cognitive specifications for
jobs, the investigation of decision making in
domains involving time pressure and high
risk, and the enhancement of proficiency
through training and technological innova-
tion. It became clear that the methodol-
ogy of KE could be folded into the broader
methodology of “cognitive task analysis”
(CTA) (Militello & Hoffman, forthcoming;
Schraagen, Chapter 11), which is now a
focal point for human-factors and cognitive-
systems engineering.

The Era of Cognitive Task Analysis

Knowledge engineering (or cognitive engi-
neering) typically starts with a problem or
challenge to be resolved or a requirement to
be satisfied with some form of information
processing technology. The design goal influ-
ences the methods to be used, including the
methods of knowledge elicitation, and the
manner in which they will be adapted. One
thing that all projects must do is identify who
is, and who is not, an expert.

Psychological research during the era of
expert systems tended to define expertise
somewhat loosely, for instance, “advanced
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Table 12 .1. Some Alternative Methods of Proficiency Scaling

Method Yield Example

In-depth career
interviews about
education,
training, etc.

Ideas about breadth
and depth of
experience;
Estimate of hours
of experience

Weather forecasting in the armed services, for
instance, involves duty assignments having
regular hours and regular job or task assignments
that can be tracked across entire careers.
Amount of time spent at actual forecasting or
forecasting-related tasks can be estimated with
some confidence (Hoffman, 1991).

Professional
standards or
licensing

Ideas about what it
takes for
individuals to
reach the top of
their field.

The study of weather forecasters involved senior
meteorologists of the US National Atmospheric
and Oceanographic Administration and the
National Weather Service (Hoffman, 1991). One
participant was one of the forecasters for Space
Shuttle launches; another was one of the
designers of the first meteorological satellites.

Measures of
performance at
the familiar tasks

Can be used for
convergence on
scales determined
by other methods.

Weather forecasting is again a case in point since
records can show for each forecaster the relation
between their forecasts and the actual weather.
In fact, this is routinely tracked in forecasting
offices by the measurement of “forecast skill
scores” (see Hoffman & Trafton, 2006).

Social Interaction
Analysis

Proficiency levels in
some group of
practitioners or
within some
community of
practice (Mieg,
2000; Stein, 1997)

In a project on knowledge preservation for the
electric power utilities (Hoffman & Hanes,
2003), experts at particular jobs (e.g.,
maintenance and repair of large turbines,
monitoring and control of nuclear chemical
reactions, etc.) were readily identified by plant
managers, trainers, and engineers. The
individuals identified as experts had been
performing their jobs for years and were known
among company personnel as “the” person in
their specialization: “If there was that kind of
problem I’d go to Ted. He’s the turbine guy.”

graduate students” in a particular domain.
In general, identification of experts was not
regarded as either a problem or an issue
in expert-system development. (For detailed
discussions, see Hart, 1986; Prerau, 1989.)
The rule of thumb based on studies of
chess (Chase & Simon, 1973) is that exper-
tise is achieved after about 10,000 hours
of practice. Recent research has suggested
a qualification on this rule of thumb. For
instance, Hoffman, Coffey, and Ford (2000)
found that even junior journeymen weather
forecasters (individuals in their early 30s)
can have had as much as 25 ,000 hours of
experience. A similar figure seems appropri-
ate for the domain of intelligence analysis
(Hoffman, 2003a).

Concern with the question of how to
define expertise (Hoffman, 1998) led to an
awareness that determination of who an
expert is in a given domain can require
effort. In a type of proficiency-scaling proce-
dure, the researcher determines a domain
and organizationally appropriate scale of
proficiency levels. Some alternative methods
are described in Table 12 .1.

Social Interaction Analysis, the result of
which is a sociogram, is perhaps the lesser
known of the methods. A sociogram, which
represents interaction patterns between peo-
ple (e.g., frequent interactions), is used
to study group clustering, communica-
tion patterns, and workflows and pro-
cesses. For Social Interaction Analysis,
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multiple individuals within an organiza-
tion are interviewed. Practitioners might be
asked, for example, “If you have a prob-
lem of type x, who would you go to for
advice?” Or they might be asked to sort
cards bearing the names of other domain
practitioners into piles according to one
or another skill dimension or knowledge
category.

Hoffman, Ford, and Coffey (2000) sug-
gested that proficiency scaling for a given
project should be based on at least two of
the methods listed in Table 12 .1. It is impor-
tant to employ a scale that is both domain
and organizationally appropriate, and that
considers the full range of proficiency. For
instance, in the project on weather forecast-
ing (Hoffman, Coffey, & Ford, 2000), the
proficiency scale distinguished three levels:
experts, journeymen, and apprentices, each
of which was further distinguished by three
levels of seniority.

The expanded KE methods palette and
the adoption of proficiency scaling rep-
resented the broadening of focus beyond
expert systems to support for the creation
of intelligent or knowledge-based systems of
a variety of forms.

Foundational Methods of Cognitive
Engineering

In North America, methods for CTA were
developed in reaction to limitations of tra-
ditional “behavioral task analysis,” as well
as to limitations of the early AI knowl-
edge acquisition techniques (Hollnagel &
Woods, 1983 ; Rasmussen, 1986). CTA also
emerged from the work of researchers who
were studying diverse domains of expertise
for the purpose of developing better meth-
ods for instructional design and enhancing
human learning (see the chapters by Greeno,
Gregg, Resnick, and Simon & Hayes in Klahr,
1976). Ethnographers, sociologists of sci-
ence, and cognitive anthropologists, work-
ing in parallel, began to look at how new
technology influences work cultures and
how technology mediates cooperative activ-
ity (e.g., Clancey, Chapter 8; Hutchins, 1995 ,

Knorr-Cetina & Mulkay, 1983 ; Suchman,
1987).

The field of “Work Analysis,” which has
existed in Europe since the 1960s, is regarded
as a branch of ergonomics, although it has
involved the study of cognitive activities
in the workplace. (For reviews of the his-
tory of the research in this tradition see De
Keyser, Decortis, & Van Daele, 1998 Militello
& Hoffman, forthcoming; Vicente, 1999.)
Work Analysis is concerned with perfor-
mance at all levels of proficiency, but that
of course entails the study of experts and
the elicitation of their knowledge. Seminal
research in Work Analysis was conducted
by Jens Rasmussen and his colleagues at
the Risø National Laboratory in Denmark
(Rasmussen, Petjersen, & Goodstein, 1994 ;
Rasmussen, 1985). They began with the goal
of making technical inroads in the safety-
engineering aspects of nuclear power and
aviation but concluded that safety could not
be assured solely through technical engi-
neering (see Rasmussen & Rouse, 1981).
Hence, they began to conduct observations
in the workplace (e.g., analyses of prototyp-
ical problem scenarios) and conduct inter-
views with experts.

The theme to these parallel North
American and European efforts has been
the attempt to understand the interac-
tion of cognition, collaboration, and com-
plex artifacts (Potter, Roth, Woods, & Elm,
2000). The reference point is the field set-
ting, wherein teams of expert practition-
ers confront significant problems aided by
technological and other types of artifacts
(Rasmussen, 1992 ; Vicente, 1999).

The broadening of KE, folding it into
CTA, has resulted in an expanded palette
of methods, including, for example, ethno-
graphic methods (Clancey, 1993 , Hutchins,
1995 ; Orr, 1996; Spradley, 1979). An exam-
ple of the application of ethnography to
expertise studies appears in Dekker, Nyce,
and Hoffman (2003). In this chapter we
cannot discuss all of the methods in detail.
Instead, we highlight three that have been
widely used, with success, in this new era of
CTA: the Critical Decision Method, Work
Domain Analysis, and Concept Mapping.
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Table 12 .2 . A Sample of a Coded CDM Protocol (Adapted from Klein et al., 1989)

Appraisal This is going to be a tough fire,
Cue and we may start running into heat exhaustion problems.
Cue It is 70 degrees now and it is going to get hotter.
Action The first truck, I would go ahead and have them open the roof up,
Action and the second truck I would go ahead and send them inside and
Action have them start ventilating, start knocking the windows out and working
Elaboration with the initial engine crew, false ceilings, and get the walls opened up.
Action As soon as I can, order the second engine to hook up to supply and pump to

engine 1.
Anticipation I am assuming engine 2 will probably be there in a second.
Cue-deliberation I don’t know how long the supply lay line is,
Anticipation but it appears we are probably going to need more water than one supply

line is going to give us.
Metacognition So I would keep in mind,
Contingency unless we can check the fire fairly rapidly.
Contingency So start thinking of other water sources.
Action-Deliberation Consider laying another supply line to engine 1.

The Critical Decision Method

The Critical Decision Method (CDM)
involves multi-pass retrospection in which
the expert is guided in the recall and
elaboration of a previously experienced
case. The CDM leverages the fact that
domain experts often retain detailed mem-
ories of previously encountered cases, espe-
cially ones that were unusual, challenging,
or in one way or another involved “critical
decisions.” The CDM does not use generic
questions of the kind “Tell me everything
you know about x,” or “Can you describe
your typical procedure?” Instead, it guides
the expert through multiple waves of re-
telling and prompts through the use of
specific probe questions (e.g., “What were
you seeing?”) and “what-if” queries (e.g.,
“What might someone else have done in
this circumstance?”). The CDM generates
rich case studies that are often useful as
training materials. It yields time-lined sce-
narios, which describe decisions (decision
types, observations, actions, options, etc.)
and aspects of decisions that can be easy
or difficult. It can also yield a list of deci-
sion requirements and perceptual cues – the
information the expert needs in order to
make decisions.

An example of a coded CDM transcript
appears in Table 12 .2 . In this example, events

in the case have been placed into a timeline
and coded into the categories indicated in
the leftmost column. As in all methods for
coding protocols, multiple coders are used
and there is a reliability check.

Given its focus on decision making, the
strength of the CDM is its use in the cre-
ation of models of reasoning (e.g., deci-
sions, strategies). Detailed presentations of
the method along with summaries of stud-
ies illustrating its successful use can be found
in Crandall, Klein, and Hoffman (2006)
and Hoffman, Crandall, and Shadbolt
(1998).

Work Domain Analysis

Unlike the CDM, which focuses on the
reasoning and strategies of the individual
practitioner, Work Domain Analysis (WDA)
builds a representation of an entire work
domain. WDA has most frequently been
used to describe the structure of human-
machine systems for process control, but it
is now finding increasing use in the analy-
sis and design of complex, systems (Burns
& Hajdukiewicz, 2004 ; Chow & Vicente,
2002 ; Lintern, Miller, & Baker, 2002 ; Naikar
& Sanderson, 2001).

An Abstraction-Decomposition matrix
represents a work domain in terms of
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Figure 12 .1. Two tutorial examples of the Abstraction-Decomposition representation, a primarily
technical system (Home Cooling, left panel) and a sociotechnical system (Library Client Tracking,
right panel).

“levels of abstraction,” where each level
is a distinctive type of constraint. Fig-
ure 12 .1 presents matrices for two systems,
one designed predominantly around phys-
ical laws and the other designed predom-
inantly around social values. The library
example grapples with a pervasive social
issue, the need for individual identification
balanced against the desire for personal con-
fidentiality. These tutorial examples demon-
strate that the Abstraction-Decomposition
format can be used with markedly differ-
ent work domains. In both of these matrices,
entries at each level constitute the means
to achieve ends at the level above. The
intent is to express means-ends relations
between the entries of adjacent levels, with
lower levels showing how higher-level func-
tions are met, and higher levels showing
why lower-level forms and functions are
necessary.

Work domains are also represented in
terms of a second dimension: “levels of
decomposition,” from organizational con-

text, down to social collectives (teams),
down to individual worker or individual
component (e.g., software package residing
on a particular workstation).

Typically, a work-domain analysis is ini-
tiated from a study of documents, although
once an Abstraction-Decomposition matrix
is reasonably well developed, interviews
with domain experts will help the ana-
lyst extend and refine it. Vicente (1999)
argues that the Abstraction-Decomposition
matrix is an activity-independent represen-
tation and should contain only descrip-
tions of the work domain (the tutorial
examples of Figure 12 .1 were developed
with that stricture in mind). However,
Vicente’s advice is not followed universally
within the community that practices WDA;
some analysts include processes in their
Abstraction-Decomposition matrices (e.g.,
Burns & Hajdukiewicz, 2004).

It is possible to add activity to the repre-
sentation yet remain consistent with Vicente
(1999) by overlaying a trajectory derived
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from a description of strategic reasoning
undertaken by experts. Figure 12 .2 presents
a fragment of a structural description of a
weather-forecasting work domain, and Fig-
ure 12 .3 presents the same structural descrip-
tion with an activity overlay developed from
a transcript of an expert forecaster’s descrip-
tion of jobs, roles, and tools involved in fore-
casting (Hoffman, Coffey, & Ford, 2000).
Activity statements (shown as callouts in
Figure 12 .3) were coded as falling into one
or another of the cells, and the temporal
sequence of the activity was represented by
the flow of arrows as connectors to show
how forecasters navigate opportunistically
through an abstraction-decomposition space
as they seek the information to diagnose and
solve the problems.

When used in this manner, the matrix
captures important propositions as elicited
from domain experts concerning their goals
and reasoning (see, e.g., Burns, Bryant, &
Chalmers, 2001; Rasmussen, 1986; Schmidt
& Luczak, 2000; Vicente, Christoffersen, &
Pereklita, 1995) within the context of collab-
oration with larger collectives and organiza-
tional goals.

Figure 12 .2 . An Abstraction-Decomposition matrix of a fragment of a weather-forecasting work
domain.

Concept Mapping

The third CTA method we will discuss
is also one that has been widely used
and has met with considerable success.
Unlike Abstraction-Decomposition and its
functional analysis of work domains, and
unlike the CDM and its focus on reasoning
and strategies, Concept Mapping has as its
great strength the generation of models of
knowledge.

Concept Maps are meaningful diagrams
that include concepts (enclosed in boxes)
and relationships among concepts or propo-
sitions (indicated by labeled connections
between related concepts). Concept Map-
ping has foundations in the theory of
Meaningful Learning (Ausubel, Novak, &
Hanesian, 1978) and decades of research and
application, primarily in education (Novak,
1998). Concept Maps can be used to show
gaps in student knowledge. At the other
end of the proficiency scale, Concept Maps
made by domain experts tend to show
high levels of agreement (see Gordon, 1992 ;
Hoffman, Coffey, & Ford, 2000). (Reviews
of the literature and discussion of methods
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Figure 12 .3 . An Abstraction-Decomposition matrix of a fragment of a weather-forecasting work
domain with an activity overlay (statements in callouts are quotes from a forecaster).

for making Concept Maps can be found in
Cañas et al., 2004 ; and Crandall, Klein, &
Hoffman, 2006.) Figure 12 .4 is a Concept
Map that lays out expert knowledge about
the role of cold fronts in the Gulf Coast
(Hoffman, Coffey, & Ford, 2000).

Although Concept Maps can be made by
use of paper and pencil, a white board, or
Post-Its, the Concept Maps presented here
were created by use of CmapTools, a soft-
ware suite created at the Institute for Human
and Machine Cognition (free download at
http://ihmc.us). In the KE procedure involv-
ing an individual expert, one researcher
stands at a screen and serves as the facilitator
while another researcher drives the laptop
and creates the Concept Map that is pro-
jected on the screen. The facilitator helps
the domain expert build up a representa-
tion of their domain knowledge, in effect
combining KE with knowledge representa-
tion. (This is one reason the method is rela-
tively efficient.) Concept Mapping can also
be used by teams or groups, for purposes
other than KE (e.g., brainstorming, consen-

sus formation). Teams can be structured in
a variety of ways and can make and share
Concept Maps over the world-wide web (see
Cañas et al., 2004).

The ability to hyperlink digital “reso-
urces” such as text documents, images,
video clips, and URLs is another signifi-
cant advantage provided by computerized
means of developing Concept Maps (Cmap-
Tools indicate hyperlinks by the small icons
underneath concept nodes). Hyperlinks can
connect to other Concept Maps; a set
of Concept Maps hyperlinked together is
regarded as a “knowledge model.” Figure 12 .5
shows a screen shot from the top-level Con-
cept Map in the System To Organize Rep-
resentations in Meteorology (STORM), in
which a large number of Concept Maps
are linked together. In Figure 12 .5 , some of
the resources have been opened for illus-
trative purposes (real-time satellite imagery,
computer weather forecasts, and digital
video in which the domain expert pro-
vides brief explanatory statements for some
of the concepts throughout the model).
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All of the STORM Concept Maps and
resources can be viewed at http://www.
ihmc.us/research/projects/STORMLK/

Knowledge models structured as Con-
cept Maps can serve as living repositories
of expert knowledge to support knowledge
sharing as well as knowledge preservation.
They can serve also as interfaces for intelli-
gent systems where the model of the expert’s
knowledge becomes the interface for a per-
formance support tool or training aid. (Ford
et al., 1996).

Methodological Concepts and Issues

Research and various applied projects con-
ducted since the seminal works on KE
methodology have left some ideas standing
and have led to some new and potentially
valuable ideas. One recent review of CTA
methods (Bonacteo & Burns, forthcoming)

Figure 12 .4. A Concept Map about cold fronts in Gulf Coast weather.

lists dozens of methods. Although not all
of them are methods that would be use-
ful as knowledge-elicitation or knowledge-
representation procedures, it is clear that the
roster of tools and methods available to cog-
nitive engineers has expanded considerably
over the past two decades. We look now to
core ideas and tidbits of guidance that have
stood the test of time.

Where the Rubber Meets the Road

(1). In eliciting expert knowledge one can: (a)
Ask people questions, and (b) Observe per-
formance. Questions can be asked in the
great many forms and formats for inter-
viewing, including unstructured interviews,
the CDM procedure, and Concept Map-
ping, as well as many other techniques (e.g.,
Endsley & Garland, 2000). Performance can
be observed via ethnographic studies of pat-
terns of communication in the workplace,
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Figure 12 .5 . A screen shot of a Concept Map with some opened resources.

evaluations in terms of performance mea-
sures (e.g., the accuracy of weather fore-
casts), or evaluations of recall, recognition,
or reaction-time performance in contrived
tasks or think-aloud problem solving tasks.

(2 ). In eliciting expert knowledge one
can attempt to create models of the work
domain, models of practitioner knowledge of
the domain, or models of practitioner reason-
ing. Models of these three kinds take differ-
ent forms and have different sorts of uses
and applications. This is illustrated roughly
by the three methods we have described
here. The CDM can be used to create
products that describe practitioner reason-
ing (e.g., decision types, strategies, deci-
sion requirements, informational cues). The
Abstraction-Decomposition matrix repre-
sents the functional structure of the work
domain, which can provide context for an
overlay of activity developed from inter-
view protocols or expert narratives. Concept

Mapping represents practitioner knowledge
of domain concepts such as relations, laws,
and case types.

(3). Knowledge elicitation methods differ
in their relative efficiency. For instance, the
think-aloud problem solving task combined
with protocol analysis has uses in the psy-
chology laboratory but is relatively ineffi-
cient in the context of knowledge elicitation.
Concept Mapping is arguably the most effi-
cient method for the elicitation of domain
knowledge (Hoffman, 2002).We see a need
for more studies on this topic.

(4). Knowledge-elicitation methods can be
combined in various ways. Indeed, a recom-
mendation from the 1980s still stands –
that any project involving expert knowl-
edge elicitation should use more than one
knowledge-elicitation method. One com-
bination that has recently become salient
is the combination of the CDM with the
two other procedures we have discussed.
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Concept-Mapping interviews almost always
trigger in the experts the recall of previ-
ously encountered tough cases. This can be
used to substitute for the “Incident Selec-
tion” step in the CDM. Furthermore, case
studies generated by the CDM can be used
as resources to populate the Concept-Map
knowledge models (see Hoffman, Coffey, &
Ford, 2000). As another example, Naikar
and Saunders (2003) conducted a Work
Domain Analysis to isolate safety-significant
events from aviation incident reports and
then employed the CDM in interviews with
authors of those reports to identify critical
cognitive issues that precipitated or exacer-
bated the event.

(5). The gold is not in the documents.
Document analysis is useful in bootstrap-
ping researchers into the domain of study
and is a recommended method for initiating
Work Domain Analysis (e.g., Lintern et al.,
2002), but experts possess knowledge and
strategies that do not appear in documents
and task descriptions. Cognitive engineers
invariably rely on interactions with experts
to garner implicit, obscure, and otherwise
undocumented expert knowledge. Even in
Work Domain Analysis, which is heavily
oriented towards Document Analysis, inter-
actions with experts are used to confirm
and refine the Abstraction-Decomposition
matrices.

In the weather-forecasting project (Hoff-
man, Coffey, & Ford, 2000), an expert told
how she predicted the lifting of fog. She
would look out toward the downtown and
see how many floors above ground level she
could count before the floors got lost in the
fog deck. Her reasoning relied on a heuristic
of the form, “If I cannot see the 10th floor
by 10 AM, pilots will not be able to take
off until after lunchtime.” Such a heuris-
tic has great value but is hardly the sort
of thing that could be put into a formal
standard operating procedure. Many obser-
vations have been made of how engineers in
process control bend rules and deviate from
mandated procedures so that they can do
their jobs more effectively (see Koopman &
Hoffman, 2003). We would hasten to gen-
eralize by saying that all experts who work

in complex sociotechnical contexts possess
knowledge and reasoning strategies that are
not captured in existing procedures or doc-
uments, many of which represent (naughty)
departures from what those experts are sup-
posed to do or to believe (Johnston, 2003 ;
McDonald, Corrigan, & Ward, 2002).

Discovery of these undocumented depar-
tures from authorized procedures represents
a window on the “true work” (Vicente,
1999), which is cognitive work independent
of particular technologies, that is, it is gov-
erned only by domain constraints and by
human cognitive constraints. Especially after
an accident, it is commonly argued that
experts who depart from authorized proce-
dures are, in some way, negligent. Neverthe-
less, the adaptive process that generates the
departures is not only inevitable but is also a
primary source of efficient and robust work
procedures (Lintern, 2003). In that these
windows are suggestive of leverage points
and ideas for new aiding technologies, cog-
nitive engineers need to pay them serious
attention.

(6). Differential access is not a salient
problem. The first wave of comparative
KE methodology research generated the
hypothesis that different “kinds” of knowl-
edge might be more amenable to elicita-
tion by particular methods (Hoffman, 1987),
and some studies suggested the possibility
of differential access (Cooke & MacDonald,
1986, 1987; Evans, Jentsch, Hitt, Bowers, &
Salas, 2001). Tasks involving the generation
of lists of domain concepts can in fact result
in lists of domain concepts, and tasks involv-
ing the specification of procedures can in
fact result in statements about rules or pro-
cedures. However, some studies have found
little or no evidence for differential access
(e.g., Adelman, 1989; Shadbolt & Burton,
1990), and we conclude that a strong version
of the differential-access hypothesis has not
held up well under scrutiny. All of the avail-
able methods can say things about so-called
declarative knowledge, so-called procedural
knowledge, and so forth.

All KE methods can be used to iden-
tify leverage points – aspects of the orga-
nization or work domain where even a
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modest infusion of supporting technologies
might have positive results (e.g., redesign
of interfaces, redesign of the workspace
layout, creation of new functionalities for
existing software, and ideas about entirely
new software systems.) Again we can use
the project on expert weather forecasting
as an example (Hoffman, Coffey, & Ford,
2000). That project compared a number
of alternative knowledge-elicitation meth-
ods including protocol analysis, the CDM,
the Knowledge Audit (Militello & Hutton,
1998; see Ross, Shafer and Klein, this vol-
ume), an analysis of “Standard Operating
Procedures” documents, the Recent Case
Walkthrough method (Militello & Hutton,
1998), a Workspace and Workpatterns anal-
ysis (Vicente, 1999), and Concept Mapping.
All methods yielded data that spoke to prac-
titioner knowledge and reasoning and all also
identified leverage points.

(7). “Tacit” knowledge is not a salient prob-
lem. Without getting into the philosophi-
cal weeds of what one means by “kinds”
of knowledge, another concern has to do
with the possibility that routine knowledge
about procedures or task activities might
become “tacit,” that is, so automatic as to
be inexpressible via introspection or ver-
bal report. This hangover issue from the
heyday of Behaviorism remains to this day
a non-problem in the practical context of
eliciting knowledge from experts. For one
thing, it has never been demonstrated that
there exists such a thing as “knowledge that
cannot be verbalized in principle,” and the
burden of proof falls on the shoulders of
those who make the existence claim. Again
sidestepping the philosophical issues (i.e., if
it cannot be articulated verbally, is it really
knowledge?), we maintain that the empiri-
cal facts mitigate the issue. For instance, in
Concept-Mapping interviews with domain
experts, experience shows that almost every
time the expert will reach a point in making a
Concept Map where s/he will say something
like, “Well, I’ve never really thought about that,
or thought about it in this way, but now that
you mention it . . . ,” and what follows will
be a clear specification on some procedure,
strategy, or aspect of subdomain knowl-

edge that had not been articulated up to
that point.

(8). Good knowledge elicitation procedures
are “effective scaffolds.” Although there may
be phenomena to which one could legiti-
mately, or at least arguably, append the des-
ignation “tacit knowledge,” there is no indi-
cation that such knowledge lies beyond the
reach of science in some unscientific nether-
world of intuitions or unobservables. Over
and over again, the lesson is not that there
is knowledge that experts literally cannot
articulate, nor is it the hangover issue of
whether verbalization “interferes” with rea-
soning. Rather, the issue is whether the KE
procedure provides sufficient scaffolding to
support the expert in articulating what they
know. Support involves the specifics of the
procedure (e.g., probe questions), but it also
involves the fact that knowledge elicitation
is a collaborative process. There is no sub-
stitute for the skill of the elicitor (e.g., in
framing alternative suggestions and word-
ings). Likewise, there is no substitute for
the skill of the participating practitioner.
Some experts will have good insight, but
others will not. Though it might be pos-
sible for someone to prove the existence
of “knowledge” that cannot be uncovered,
knowledge engineers face the immediate,
practical challenges of designing new and
better sociotechnical systems. They accom-
plish something when they uncover useful
knowledge that might have otherwise been
missed.

New Ideas

Recent research and application efforts have
also yielded some new ideas about the
knowledge elicitation methods palette.

(1). The (hypothetical) problem of differ-
ential access has given way to a practi-
cal consideration of “differential utility.” Any
given method might be more useful for
certain purposes, might be more applica-
ble to certain domains, or might be more
useful with experts having certain cogni-
tive styles. In other words, each knowledge-
elicitation method has its strengths and
weaknesses. Some of these are more purely
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methodological or procedural (e.g., tran-
scription and protocol analysis takes a long
time), but some relate to the content of
what is elicited. The CDM has as its strength
the elicitation of knowledge about percep-
tual cues and patterns, decision types, and
reasoning strategies. The strength of Con-
cept Mapping lies in the creation of knowl-
edge models that can be used in the cre-
ation of knowledge bases or interfaces. Work
Domain Analysis, which maps the func-
tional structure of the work domain, can pro-
vide a backdrop against which the knowl-
edge and skills of the individual expert can
be fitted into the larger functional context
of the organization and its purposes. Prod-
ucts from any of these procedures can sup-
port the design of new interfaces or even
the redesign of workplaces and methods of
collaboration.

(2 ). Methodology benefits from oppor-
tunism. It can be valuable during a
knowledge-elicitation project to be open to
emerging possibilities and new opportuni-
ties, even opportunities to create new meth-
ods or try out and evaluate new combina-
tions of methods. In the weather-forecasting
project (Hoffman, Coffey, & Ford, 2000),
Concept-Mapping interviews demonstrated
that practitioners were quite comfortable
with psychologists’ notion of a “mental
model” because the field has for years dis-
tinguished forecaster reasoning (“concep-
tual models”) from the outputs of the
mathematical computer models of weather.
Indeed, the notion of a mental model has
been invoked as an explanatory concept in
weather forecasting for decades (see Hoff-
man, Trafton, & Roebber, forthcoming).
Practitioners were quite open to discussing
their reasoning, and so a special interview
was crafted to explore this topic in detail
(Hoffman, Coffey, & Carnot, 2000).

(3). Knowledge elicitation is not a one-off
procedure. Historically, KE was considered
in the context of creating intelligent sys-
tems for particular applications. The hori-
zons were expanded by such applications
as the preservation of organizational or
team knowledge (Klein, 1992). This notion
was recently expanded even further to

the idea of “corporate knowledge manage-
ment,” which includes capture, archiving,
application to training, proprietary analysis,
and other activities (e.g., Becerra-Fernandez,
Gonzalez, & Sabherwal, 2004 ; Davenport
& Prusak, 1998). A number of government
and private sector organizations have found
a need to capture expert knowledge prior to
the retirement of the experts and also the
need, sometimes urgent, to reclaim exper-
tise from individuals who have recently
retired (Hoffman & Hanes, 2003). Instan-
tiation of knowledge capture as part of an
organizational culture entails many poten-
tial obstacles, such as management and per-
sonnel buy-in. It also raises many practical
problems, not the least of which is how to
incorporate a process of ongoing knowledge
capture into the ordinary activities of the
experts without burdening them with an
additional task.

Recognition of the value of the analy-
sis of tough cases led to a recommenda-
tion that experts routinely make notes about
important aspects of tough cases that they
encounter (Hoffman, 1987). This idea has
been taken to new levels in recent years. For
instance, because of downsizing in the 1980s,
the electric power utilities face a situation in
which senior experts are retiring and there
is not yet a cohort of junior experts who
are primed to take up the mantle (Hoffman
& Hanes, 2003). At one utility, a turbine
had been taken off line for total refitting,
an event that was seen as an opportunity
to videotape certain repair jobs that require
expertise but are generally only required
occasionally (on the order of once every 10 or
more years).

Significant expertise involves consider-
able domain and procedural knowledge and
an extensive repertoire of skills and heuris-
tics. Elicitation is rarely something that
can be done easily or quickly. In eliciting
weather-forecasting knowledge for just the
Florida Gulf Coast region of the United
Sates, about 150 Concept Maps were made
about local phenomena involving fog, thun-
derstorms, and hurricanes. And yet, dozens
more Concept Maps could have been made
on additional topics, including the use of
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the new weather radar systems and the use
of the many computer models for weather
forecasting (Hoffman, Coffey, & Ford,
2000). A current project on “knowledge re-
covery” that involves reclamation of expert
knowledge about terrain analysis from exist-
ing documents such as the Terrain Analysis
Database (Hoffman, 2003b) has generated
over 150 Concept Maps containing more
than 3 ,000 propositions.

Although knowledge elicitation on such a
scale is daunting, we now have the technolo-
gies and methodologies to facilitate the elic-
itation, preservation, and sharing of expert
knowledge on a scale never before possible.
This is a profound application of cognitive
science and is one that is of immense value
to society.

Practice, Practice, Practice

No matter how much detail is provided
about the conduct of a knowledge-elicitation
procedure, there is no substitute for prac-
tice. The elicitor needs to adapt on the fly
to individual differences in style, personal-
ity, agenda, and goals. In “breaking the ice”
and establishing rapport, the elicitor needs
to show good intentions and needs to be
sensitive to possible concerns on the part of
the expert that the capture of his/her knowl-
edge might mean the loss of their job (per-
haps to a machine). To be good and effective
at knowledge-elicitation, one must attempt
to become an “expert apprentice” – expe-
rienced at, skilled at, and comfortable with
going into new domains, boostrapping effi-
ciently and then designing and conducting
a series of knowledge-elicitation procedures
appropriate to project goals. The topic of
how to train people to be expert apprentices
is one that we hope will receive attention
from researchers in the coming years (see
Militello & Quill, forthcoming).
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