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Abstract 

Uncertainty plays a critical role in the analysis for a wide and diverse set of fields from economics to engineering.  
The term ‘uncertainty’ has come to encompass a multiplicity of concepts.  This paper begins with a literature survey 
of uncertainty definitions and classifications from various fields.  A classification of uncertainty for the design and 
development of complex systems follows.  The various classifications are more practical than theoretical: to make 
distinct the techniques used to address each type of uncertainty and to demonstrate the effects of each type of 
uncertainty in each field.  The classification for the design and development of complex systems delineates 
ambiguity, epistemic, aleatory, and interaction uncertainty.  Epistemic uncertainty is further subdivided into model-
form, phenomenological, and behavioral uncertainty, each of which is described in detail.  The uncertainty 
taxonomy presented is an integral part of ongoing research into propagating and mitigating the effect of all types of 
uncertainty in the design and development of complex multidisciplinary engineering systems. 

Introduction 

Ideas and concepts of uncertainty have long been associated with gambling and games.  The earliest-known form of 
gambling was a kind of dice game played with an astragalus (knuckle-bone) in 3500 BC Egypt.1  Gambling has 
developed considerably in the centuries that followed but the underlying form of this type of uncertainty is 
unchanged.  Pure games of chance, such as the astragalus, roulette, or craps, deal with aleatory uncertainty, 
essentially inherent randomness.  These games are distinct from games such as poker or horse racing in which skill 
or knowledge makes a difference.  Formally addressing this type of uncertainty in games of chance began in the 
Renaissance and culminated in the theory of probability during the 17th century.2 

The Greeks of the 4th century BC were the first recorded civilization to have considered uncertainty explicitly, 
primarily in the context of epistemology.  The word epistemology is derived from the Greek episteme, meaning 
“knowledge”, and logos, which has several meanings, including “theory”.  Epistemology deals with the possibilities 
and limits of human knowledge.  Basically it tries to arrive at a knowledge of knowledge itself.  Aristotle suggested 
that people should make decisions on the basis of “desire and reasoning to some end” but offered no guidance to the 
likelihood of a successful outcome.  Despite their explicit consideration of uncertainty, when the Greeks wanted a 
prediction of what the future might hold they turned to the oracles instead of consulting their wisest philosophers.1 

Refs. 1 and 2 provide an extensive history of uncertainty in the context of risk management and probability theory, 
respectively.  Ideas about aleatory and epistemic uncertainty have developed significantly since the early Egyptians 
and Greeks but the distinction has persisted almost unchanged until the 20th century and only recently has the impact 
of uncertainty been analyzed and understood.  Uncertainty influences decisions, designs, and behavior in a wide 
variety of fields from economics to engineering.  Reducing uncertainty has been and continues to be a costly 
business in time and resources.  Efforts to classify and define uncertainty, propagate it through an analysis, and 
devise methods to mitigate its impact have been the objective of research efforts.  The remainder of this paper 
summarizes uncertainty taxonomies and definitions of various fields then provides a new classification for the 
design and development of complex systems with detailed uncertainty definitions. 
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Uncertainty Classifications & Definitions 

A fundamental definition of uncertainty is “liability to chance or accident”, “doubtfulness or vagueness”, “want of 
assurance or confidence; hesitation, irresolution”, and “something not definitely known or knowable”.3  This 
definition has motivated a wide variety of classifications of uncertainty in a variegated set of fields.  Many of the 
uncertainty classifications that follow have similarities and most have an emphasis on one aspect of uncertainty 
which most impacts that particular field.  Hence, these classifications are often more of a practical than theoretical 
significance.  Unfortunately, many of these taxonomies have different definitions for the same words.  The 
references provided are not exhaustive but are representative of the general areas.  Research is ongoing into 
collecting more detailed information from a variety of fields, in particular the field of life sciences which is not 
discussed in this paper. 

Social Sciences 

Research into uncertainty in the field of social sciences has a rich history.  The following section summarizes this 
research in the fields of economics; decision making, management, and system analysis; and policy and risk 
analysis.  

Economics 
Classical economic theory had no room for uncertainty.  The theory assumed that people decide how to consume, 
produce, and invest with full knowledge of what the outcome of their decisions will be.  Uncertainty was either 
ignored or explicitly “assumed away”.  The resulting theory was neither realistic nor useful.4  To develop a realistic 
theory, economists began studying uncertainty extensively starting in the early 20th century.  The American 
economist Frank Knight wrote in 1921, “Uncertainty must be taken in a sense radically distinct from the familiar 
notion of Risk, from which it has never been properly separated.”5  Knight refers to "risk" as situations where the 
decision-maker can assign mathematical probabilities to the randomness with which he is faced.  In contrast, 
"uncertainty" refers to situations when this randomness "cannot" be expressed in terms of specific mathematical 
probabilities.  As the English economist, journalist, and financier John Maynard Keynes was later to express it: 

"By `uncertain' knowledge, let me explain, I do not mean merely to distinguish what is known for certain 
from what is only probable.  The game of roulette is not subject, in this sense, to uncertainty ... The sense in 
which I am using the term is that in which the prospect of a European war is uncertain, or the price of 
copper and the rate of interest twenty years hence ... About these matters there is no scientific basis on 
which to form any calculable probability whatever.  We simply do not know."6 

A distinction in this classification arrived in the mid-20th century, influenced by pioneering work in the creation and 
development of Game Theory by von Neumann and Morgenstern; Nash; and others.7  Uncertainty and information 
about the environment was viewed as distinct from that of uncertainty and information about others’ behavior or the 
outcome of as yet unperformed computations.8  Building on the mid-20th century work, economists have recently 
gone a step further arguing that Knightian risk and uncertainty are one and the same thing.  In Knightian uncertainty 
the problem is not that the agent cannot assign probabilities but in fact that the agent does not assign probabilities.  
That is to say, that uncertainty is really an epistemological and not an ontological problem, a problem of 
"knowledge" of the relevant probabilities and not of their "existence".  Uncertainty has recently been classified as 
fundamental uncertainty or ambiguity.9  Fundamental uncertainty is not merely that there is not enough information 
to reliably attach probabilities to a given number of events but that in fact, an event which cannot be imagined may 
occur in the future.  This implies that some relevant information cannot be known, not even in principle, and that 
something unimaginable may happen.9  Ambiguity is defined as “uncertainty about probability, created by missing 
information that is relevant and could be known.”10  It should be noted that some economists argue in the opposite 
direction: that there are actually no probabilities out there to be "known" because probabilities are really only 
"beliefs".  In other words, probabilities are merely subjectively-assigned expressions of beliefs and have no 
necessary connection to the true randomness of the world (if it is random at all).11  The evolution in economic 
uncertainty belief is illustrated in Fig. 1. 
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Fig. 1.   Uncertainty Classifications in Economics. 

Decision Making, Management, and Systems Analysis 
Most decision making and management texts follow an early influential text and simplify uncertainty into risk and 
uncertainty (ignorance).12  Risk is if each action leads to one of a set of possible specific outcomes with each 
outcome occurring with a known probability.  Risk implies that all possible acts are known, all possible outcomes 
arising from each act are known, and it is possible to assign probabilities to each act.  Uncertainty is if either action 
or both action and outcome have as its consequence a set of possible specific outcomes where the probabilities of 
these outcomes are unknown or are not meaningful.  Uncertainty implies either that all possible acts and outcomes 
are not known or it makes no sense to assign probabilities to them.  This simple classification is an idealization and 
philosophical controversial.12,13   

The field of management follows a somewhat similar tack.  Management stresses the need to not only theorize 
possible eventualities but also their consequences.14  Although Ref. 14 does not explicitly define or classify 
uncertainty, it does allude to uncertainty in consequences, modeling, people’s actions, and information available to 
various parties (so called asymmetric uncertainty).  Another management reference does classify risk (uncertainty) 
as performance, schedule, development cost, technology, market, and business in the context of product 
development.15  The definitions for each are provided in Table 1. 

Table 1   Risk Definitions for Product Development15 
Risk Uncertainty in … 
Performance the ability of a design to meet desired quality criteria (along any one or 

more dimensions of merit, including price and timing) and the 
consequences thereof 

Schedule the ability of a project to develop an acceptable design (i.e., to 
sufficiently reduce performance risk) within a span of time and the 
consequences thereof 

Development cost the ability of a project to develop an acceptable design (i.e., to 
sufficiently reduce performance risk) within a given budget and the 
consequences thereof 

Technology capability of technology to provide performance benefits (within cost 
and/or schedule expectations) and the consequences thereof [a subset of 
performance risk] 

Market the anticipated utility or value to the market of the chosen “design to” 
specifications (including price and timing) and the consequences thereof 

Business political, economic, labor, societal, or other factors in the business 
environment and the consequences thereof 

Systems analysis follows closely the decision making definition.16  In short, the classification of uncertainty in 
decision making, management, and systems analysis builds on the Knightian (Keynesian) concept of risk and 
uncertainty of economics that was previously discussed.  

Policy & Risk Analysis 
The policy and risk analysis community has classified uncertainty into quantity and model form uncertainty.17  Fig. 
2 illustrates this classification.   
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Fig. 2.   Uncertainty Classification for Policy & Risk Analysis.17 

Quantity type uncertainty is defined in Table 2. 

Table 2   Quantity Type Uncertainty Definitions for Policy & Risk Analysis17 
Uncertainty Subclassification Definition/Explanation 
Empirical 

quantity 
Statistical variation arises from random error in direct measurements of a quantity 

 Subjective 
judgment 

teamed with systematic error as the difference between the true value 
of a quantity of interest and the value to which the mean of the 
measurements converges as more measurements are taken 

 Linguistic 
imprecision 

refers to quantities that are not well-specified and could not be 
empirically measured in principle 

 Variability refers to quantities that are variable over time and space 
 Randomness uncertainty that is irreducible in even principle 
 Disagreement refers to differences of opinion between informed experts about a 

quantity 
 Approximation difference between the assumed quantity value and the real-world 

value 
Decision 

variable 
n/a quantity over which the decision maker exercises direct control 

Value 
parameter 

n/a parameter that represents aspects of the preferences of the decision 
makers or the people they represent 

Model domain 
parameter 

n/a specifies the domain or scope of the system being modeled 

Outcome 
criteria 

n/a variable used to rank or measure the desirability of possible 
outcomes 

Model form uncertainty refers to the approximations that a model provides to a real-world system.  Model form 
uncertainty is differentiated here from (quantity type) model domain parameter uncertainty by referring to the actual 
model itself as opposed to the quantities assumed in the model.  Any model is unavoidably a simplification of 
reality.  A real-world system contains phenomena or behaviors that cannot be produced by even the most detailed 
model.  The difference between the real-world system and such a model is the model form uncertainty.  It should be 
noted that Ref. 17 stresses that defined constants (such as the number of days in December, the number of joules in a 
kilowatt-hour, etc.) and index variables (used to identify a location or cell in the spatial or temporal domain of a 
model) are not uncertainties. 
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Physical Sciences 

Uncertainty in the physical sciences has primarily concentrated on error analysis and quantum physics.  Error 
analysis uncertainty often goes by the name measurement uncertainty and represents the difference between a 
measured value and the actual value.  This uncertainty impacts a wide range of fields in the physical sciences and 
engineering.  Much has been made of Werner Heisenberg’s uncertainty principle that was first proposed in 1927.  
Heisenberg introduced the notion that it is impossible to determine simultaneously with unlimited precision the 
position and movement of a particle.  Heisenberg was careful to point out that the inescapable uncertainties in 
momentum and position do not arise from imperfections in practical measuring instruments but rather from the 
quantum structure of matter itself.18  This uncertainty in quantum physics is analogous to the inherent randomness in 
Policy & Risk Analysis described by Ref. 17.  It has been argued that this indeterminacy is not a matter of principle 
but simply a result of the limited (current human) understanding of the world (an epistemological issue).  There may 
be hidden variables and causal mechanisms that, if discovered and understood, would resolve the apparent inherent 
randomness.  This difference of opinion is similar to the notion of risk and uncertainty discussed in economics and 
decision making. 

Engineering 

Research into uncertainty in the field of engineering has been significant, particularly in the last two decades.  This 
section briefly summarizes uncertainty research that has been completed in the engineering fields of control and 
dynamical systems; systems; civil, structural, and environmental, management science; computational methods and 
simulation; mechanical; and aerospace. 

Control & Dynamical Systems 
Control and dynamical systems define uncertainty as the difference or errors between models and reality.19  The 
field classifies uncertainty as structured or unstructured.  Structured uncertainty represents a known function but the 
values of the function parameters are uncertain.  Unstructured uncertainty is entirely unknown but is limited in 
magnitude, that is to say, it is bounded.20  In some ways this difference between structured and unstructured 
uncertainty is analogous to that of aleatory and epistemic uncertainty.  Control and dynamical systems focuses 
primarily on unstructured uncertainty.  Unstructured uncertainty, also referred to as model uncertainty, is a generic 
error associated with all design models.   

Systems Engineering 
System engineering provides two distinct definitions/classifications for uncertainty: one that is rigorous but 
somewhat theoretical, the other which is more relaxed but practical.  The rigorous definition classifies uncertainty as 
either vagueness or ambiguity.  Vagueness is associated with the difficulty of making sharp or precise distinctions in 
the world; that is, some domain of interest is vague if it cannot be delimited by sharp boundaries.  Ambiguity is 
associated with one-to-many relations, that is, situations in which the choice between two or more alternatives is left 
unspecified.  Ambiguity is further separated into nonspecificity of evidence, dissonance in evidence, and confusion 
in evidence.21   

The practical definition characterizes uncertainty by a distribution of outcomes with various likelihoods of both 
occurrence and severity.  It intertwines the definition with that of risk.  Risk is defined as a measure of the 
uncertainty of attaining a goal, objective, or requirement pertaining to technical performance, cost, and schedule.  
Risk level is categorized by the probability of occurrence and the consequences of occurrence.  Risk is classified 
into technical (e.g., feasibility, operability, producibility, testability, and systems effectiveness), cost (e.g., estimates, 
goals), schedule (e.g., technology/material availability, technical achievements, milestones), and programmatic (e.g., 
resources, contractual).22  This classification is similar to the management classification of Ref. 15.  The two distinct 
classifications are provided in Fig. 3. 
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Fig. 3.   Uncertainty Classification in Systems Engineering. 

Civil, Structural, and Environmental 
Although the fields of civil, structural, and environmental engineering are often grouped together, the classifications 
for uncertainty that each assume is different.  The leading classification of uncertainty for civil engineering is 
provided in Fig. 4.23 
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Fig. 4.   Uncertainty Classification for Civil Engineering.23 

Ref. 23 specializes the rigorous uncertainty classification provided by systems engineering (Ref. 21) to civil 
engineering.  Abstracted uncertainties arise from elements of a real system that are represented by a model.  
Unknown uncertainties are due to the nature, sources, contents, and impact on the system that are not known.  
Cognitive uncertainties arise from mind-based (subjective) abstractions of reality.  Uncertainties that are neither 
non-cognitive nor cognitive are called ‘other uncertainties’ and include conflict in information as well as human and 
organizational errors.  Ref. 23 states that the division between abstracted and non-abstracted aspects may not be 
rigid but in fact a convenience that is driven by objectives of the system modeling. 

Structural engineering follows a somewhat analogous classification.24  The classification and definitions of for 
structural engineering are provided in Fig. 5 and Table 3, respectively. 
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Fig. 5.   Uncertainty Classification for Structural Engineering.24 

Table 3   Uncertainty Definitions for Structural Engineering24 
Uncertainty Definition/Explanation 
Phenomenological arises whenever the form of construction or the design technique 

generates uncertainty about any aspect of the possible behavior of the 
structure under construction, service, and extreme conditions 

Decision arises in connection with the decision as to whether a particular 
phenomena has occurred 

Modelling associated with the use of one (or more) simplified relationships between 
the basic variables to represent the ‘real’ relationship or phenomenon of 
interest 

Prediction associated with the prediction of some future state of affairs 
Physical inherent random nature of a basic variable 
Statistical arises in the associated parameters when a simplified probability density 

function is implemented 
Human factors  
 Human error due to natural variation in task performance and gross errors 
 Human intervention associated with the intervention in the process of design, documentation, 

and construction and, to some extent, also in the use of a structure 

Ref. 24 stresses the importance of uncertainty in human factors: the uncertainties resulting from human involvement 
in the design, construction, use, etc., of structures.  Environmental engineering follows closely the policy and risk 
analysis classification and definitions provided by Ref. 17 that were discussed earlier.25 

Management Science 
The field of management science, in particular the probabilistic risk analysis community, defines uncertainty as “that 
which disappears when we become certain”.26  Uncertainty is classified into aleatory, epistemic, parameter, model, 
and volitional as illustrated in Fig. 6.  The definitions for each type of uncertainty are provided in Table 4. 
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Fig. 6.   Uncertainty Classification for Management Science.26 
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Table 4   Uncertainty Definitions for Management Science26 
Uncertainty Definition 
Aleatory arises through natural variability in a system 
Epistemic arises through lack of knowledge of a system 
Parameter uncertainty about the ‘true’ value of a parameter in a mathematical 

model 
Model uncertainty about the truth of the model 
Volitional uncertainty that an individual has in whether or not he will do what 

he agreed to do 

Ref. 26 is careful to distinguish uncertainty from ambiguity.  Uncertainty is removed by observation while 
ambiguity is removed on the level of words by linguistic conventions.  Ref. 26 assumes that it always possible to 
reduce any given ambiguity to a desired level but impossible to remove all ambiguity.  The work of disambiguation 
goes on until the residual ambiguities are not worth the effort required to remove them. 

Computational Modeling & Simulation 
One of the more extensive efforts to classify and define uncertainty has been done by the computational modeling 
and simulation community.27  Ref 27 is clear to distinguish variability, uncertainty, and error as shown in Fig. 7. 
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Fig. 7.   Uncertainty Classification for Computational Modeling & Simulation.27 

Variability is defined as the inherent variation associated with the physical system or the environment under 
consideration.  Uncertainty is defined as a potential deficiency in any phase or activity of the modeling process due 
to a lack of knowledge or incomplete information.  Sources of incomplete information are summarized in Table 5 
and follow closely the rigorous systems engineering definitions provided by Ref. 21.   

Table 5   Incomplete Information Definitions27 
Type Definition 
Vagueness Characterizes information that is imprecisely defined, unclear, or 

indistinct (characteristic of communication by language) 
Nonspecificity Refers to the variety of alternatives in a given situation that are all 

possible, i.e., not specified 
Dissonance Refers to the existence of totally or partially conflicting evidence 
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Error is defined as a recognizable deficiency in any phase or activity of the modeling and simulation that is not due 
to a lack of knowledge.  Error is further subclassified into acknowledged error (such as finite precision arithmetic on 
a computer or approximations made to simplify the modeling of a physical process) and unacknowledged error 
(such as blunders and mistakes).  The classification of uncertainty in Ref. 27 is based on the mathematical type and 
information content of the uncertain quantity.  A different perspective of uncertainty by the same group of 
researchers has also been formulated.  It is based on how uncertainty appears in the mathematical model, that is to 
say, it is a parametric or model-form uncertainty.28  This classification and definitions for uncertainty is provided in 
Fig. 8 and Table 6, respectively. 
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Fig. 8.   Uncertainty Classification for Computational Modeling & Simulation (Mathematical Model).28 

Table 6   Uncertainty Definitions for Computational Modeling & Simulation (Mathematical Model)28 
Uncertainty Definition 
Parametric Uncertainty in the occurrence in parameters contained in the 

mathematical models of a system and its environment 
Physico-

chemical 
modeling 

Limited knowledge or understanding of a physical process or 
interactions of processes in a system 

Scenario 
abstraction 

Limited knowledge for the estimation of likelihood of event 
scenarios of a system 

Error definitions in Fig. 8 remain unchanged from that of Ref. 27.  Refs. 27 and 28 provide two different 
perspectives of uncertainty.  A difference reference in the same field classifies uncertainty in an analogous manner 
as is presented in Fig. 9.29   
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Fig. 9.   Alternate Uncertainty Classification for Computational Modeling & Simulation.29 



10 
3rd Annual Predictive Methods Conference, Newport Beach, California, June 2003 

External uncertainty is variability in model prediction arising from plausible alternatives for input values (also 
known as input parameter uncertainty).  Internal uncertainty arises from two sources.  One is due to both limited 
information in estimating the characteristics of model parameters for a given fixed model structure (model parameter 
uncertainty).  The other is the model structure itself, including uncertainty in the validity of the assumptions 
underlying the model.  Research into uncertainty in this field is ongoing. 

Mechanical 
Over a decade of research into uncertainty occurred in the field of mechanical engineering beginning in the late 
1980s.30,31,32  Refs. 30, 31, and 32 combine to define uncertainty as imprecision (design imprecision), probabilistic 
uncertainty (noise, stochastic uncertainty), and possibility.  Imprecision is the representation of an incomplete design 
description.  That is to say, ranges of possibilities resulting from choices not yet made (uncertainty in choice).  
Probabilistic uncertainty is a random (stochastic) uncertainty.  Possibility is the uncertainty in the limits in capacity 
within a formal model (uncertainty due to freedom).  Fig. 10 summarizes this classification for mechanical 
engineering. 

Imprecision Possibility

Uncertainty

Probabilistic
uncertainty

 
Fig. 10.   Uncertainty Classification for Mechanical Engineering.32  

Aerospace 
Only recently has an effort been made in aerospace engineering.33,34   Ref. 33 defines uncertainty as “the 
incompleteness in knowledge (either in information or context), that causes model-based predictions to differ from 
reality in a manner described by some distribution function”.  Using an analogy to a control system problem, 
uncertainty for aerospace vehicle synthesis and design is classified into input, model parameter, measurement, and 
operational/environmental.  This classification is illustrated in Fig. 11. 
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Operational/
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Fig. 11.   Uncertainty Classification for Aerospace Vehicle Synthesis and Design.33 

Input uncertainty arises when the requirements that define a design problem are imprecise, ambiguous, or not 
defined.  Model parameter uncertainty refers to error present in all mathematical models that attempt to represent a 
physical system.  Measurement uncertainty is present when the response of interest is not directly computable from 
the mathematical model.  Finally, operational/environmental uncertainty is due to unknown/uncontrollable external 
disturbances.  This classification is redefined somewhat for the specific field of aircraft system design where 
uncertainty is now delineated into operational/environmental, system-level, and discipline-level uncertainty.35  This 
classification is presented in Fig. 12.   
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Fig. 12.   Uncertainty Classification for Aircraft Systems Design.35 
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Operational/ environmental uncertainty is concerned with modeling how a vehicle or fleet of vehicles will be 
utilized over its useful life.  System-level uncertainty is concerned with the requirements, synthesis, and predicted 
performance of a vehicle.  Finally, discipline-level uncertainty is concerned with the various contributing analyses 
that are required to synthesize vehicle alternatives. 

Uncertainty research in space system design is very recent.  Ref. 34 defines uncertainty as “inability to quantify 
precisely; a distribution that reflects potential outcome”.  Uncertainty is classified into development, operational, 
and model.34  Fig. 13 illustrates this classification and Table 7 defines these uncertainties. 
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Fig. 13.   Uncertainty Classification for Space Architectures.34 

Table 7   Uncertainty Definitions for Space Architectures34 
Uncertainty Subclassification Uncertainty of … 
Development Political development funding instability 
 Requirements requirements stability 
 Cost developing within a given budget 
 Schedule developing within a given schedule profile 
 Technology technology to provide performance benefits 
Operational Political operational funding instability 
 Lifetime performing to requirements in a given lifetime 
 Obsolescence performing to evolving expectation in a given lifetime 
 Integration operating within other necessary systems 
 Cost meeting operations cost targets 
 Market meeting demands of an unknown market 
Model n/a no formal definition 

This classification and associated definitions appears to build on the management classification provided by Ref. 15.  
Ref. 34 does not provide significant details on uncertainty types beyond these definitions and primarily concerns 
itself with mitigating uncertainty by portfolio management (drawing on an analogy to economics). 
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Uncertainty Classification for the Design and Development of Complex Systems 

The various classifications described provide both common and distinct classifications and definitions for 
uncertainty.  Unfortunately, none of the previous classifications seem exactly applicable to the design and 
development of complex systems.  Although the classifications provided in the computational modeling and 
aerospace engineering fields are thorough (Refs. 27, 28, 33, and 34), they still lack important uncertainty types.  
Furthermore, neither provides a comprehensive method to handle each type of uncertainty.  The definition and 
classifications of uncertainty from the various fields provided earlier motivate a new classification for the design and 
development of complex systems: ambiguity, epistemic, aleatory, and interaction.  This new classification is 
provided in Fig. 14. 
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Fig. 14.   Uncertainty Classification for the Design and Development of Complex Systems. 

A definition for each type of uncertainty follows.  Although some of the definitions were provided earlier for a given 
field, these definitions are repeated in full in this section for clarity.  Addressing each type of uncertainty defined is 
the subject of ongoing research. 

Ambiguity 

Because little precision is required for general communication, individuals often fall into the habit of using 
imprecise terms and expressions.  When used with others who are not familiar with the intended meanings or in a 
setting where exactitude is important, this imprecision may result in ambiguity.  Ambiguity has also been called 
imprecision, design imprecision, linguistic imprecision, and vagueness.30,17,21  Although it can be reduced by 
linguistic conventions and careful definitions, ambiguity remains an unavoidable aspect of human discourse.  A 
clarity test has been proposed as a conceptual way to sharpen up the notion of well-specifiedness.36  Imagine a 
clairvoyant who could know all facts about the universe, past, present, and future.  Given the description of the event 
or quantity, could the clairvoyant say unambiguously whether the event will occur (or had occurred)?  Could the 
clairvoyant give the exact numerical value of the quantity?  If so, the description of the event or quantity is well-
specified.  A statement such as “Jack is tall” would not pass the clarity test.  However, “Jack McCullough (social 
security number 123-45-6789) is six feet three inches tall at this instant” would pass the clarity test.  There is some 
debate as to whether ambiguity is a form of uncertainty.26  Although in theory it is possible to reduce any given 
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ambiguity to any desired level, this is often not done because of the effort required.  Fuzzy logic has been used as a 
formal method to represent ambiguity.37 

Epistemic 

Epistemic uncertainty is any lack of knowledge or information in any phase or activity of the modeling process.  The 
key feature that this definition stresses is that the fundamental cause is incomplete information or incomplete 
knowledge of some characteristic of the system or the environment.  Epistemic uncertainty also goes by the names: 
reducible uncertainty, subjective uncertainty, model form uncertainty, state of knowledge, type B uncertainty, and de 
dicto.28,26,2  Epistemic uncertainty can be further classified into model, phenomenological, and behavioral 
uncertainty. 

Model 
Model uncertainty is the accuracy of a mathematical model to describe an actual physical system of interest.  Model 
uncertainty, also known as model-form, structural, or prediction-error uncertainty, is a form of epistemic 
uncertainty.  That is to say, model uncertainty is often due to a lack of knowledge.  Model uncertainty is associated 
with the use of one or more simplified relationships between the basic variables used in representing the ‘real’ 
relationship or phenomenon of interest.24  All models are unavoidably simplifications of the reality which leads to a 
disturbing conclusion: every model is definitely false.  However, some models are better than others.  A model that 
represents the phenomena of interest over a range of interest is termed a requisite model.  Model uncertainty arises 
from approximation, numerical, and programming errors. 

Approximation Errors 
For physical processes that are relatively well understood, deficiencies in certain models are often called 
approximation errors rather than model uncertainty.  For example, in the modeling of the specific volume of a 
gas, the models can be ordered in terms of increasing accuracy (decreasing model uncertainty) as follows: ideal-
gas law, van der Waals equation, Beattie-Bridgeman equation, and Benedict-Webb-Rubin (BWR) equation.  
The ideal gas law neglects intermolecular forces between molecules and uses only one constant.  The van der 
Waals equation uses two constants to allow for interaction and volume effects.  The Beattie-Bridgeman 
equation uses five constants and is accurate over a much larger range.  The BWR equation uses eight constants 
and is even more versatile.  In general, this ordering is appropriate, but for individual gases there is no guarantee 
that any one model will be more accurate than any other because even the ideal gas law can be accurate for 
specific conditions such as low pressures and high temperatures. 

Numerical and Programming Errors 
Model uncertainty also arises from numerical and programming error.  Numerical error can arise due to finite 
precision arithmetic and can be reduced by using higher precision computers and software.  Programming error 
occurs during development of the model due to mistakes or blunders by the programmer.  Although there is no 
straightforward method for estimating programming errors, they can be detected by the person who committed 
it, resolved by better communication, or discovered by redundant organizational and operational procedures and 
protocols.27 

Phenomenological 
Phenomenological uncertainty arises whenever the design technique or form of development generates uncertainty 
about any aspect of the possible behavior of the system under development, operation, and extreme conditions.  
Some relevant information cannot be known, not even principle, at the time of making decisions during design and 
development.  Phenomenological uncertainty is particularly important for novel projects or those which attempt to 
extend the ‘state of the art’.  Often these projects fail due to an apparently ‘unimaginable’ phenomenon (so called 
“unknown unknowns”).  Evidently, only subjective estimates of the effect of this type of uncertainty can be given.24 

Behavioral 
Behavioral uncertainty is uncertainty in how individuals or organizations act.  Behavioral uncertainty arises from 
four sources: design uncertainty, requirement uncertainty, volitional uncertainty, and human errors.  Design 
uncertainty includes variables over which the engineer or designer has direct control but has not yet decided upon.  
An example is the choice an engineer has in selecting a given component among a set of possible components.  
Design uncertainty is eliminated when a system is complete as all choices have been implemented.  Requirement 
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uncertainty includes variables that some organization or individual initially determines independently of the 
engineer or designer.  An example may be the orbit of a satellite that is explicitly specified by the customer.  The 
question of whether an uncertain variable is a design or requirement depends on the context and intent of the model 
it is being used in and who the decision maker is.  For example, a new standard for cleanliness in a restaurant is a 
design variable from the perspective of the county and/or city health department but it is a requirement variable from 
the perspective of the restaurant owner and management. 

Volitional uncertainty is uncertainty about what the subject him/herself will decide.26  Other people’s future actions 
and conduct are not entirely predictable, particularly in dealing with other organizations.  Multiple organizations are 
often required to design and develop complex multidisciplinary systems since a single organization often lacks the 
knowledge base to complete the entire system on their own.  The lead organization hires contractors and/or 
consultants to help in design and development.  Contractors and consultants may provide full assemblies, 
components, analysis, and/or labor.  Estimates for these products and resources are often underestimated to the lead 
organization and result in potentially significant engineering and management problems.  Although an individual or 
organization cannot quantify their own volitional uncertainty, one individual or organization could do it for another. 

Human errors occur during development of a system or project due to blunders or mistakes by an individual or 
individuals.  Similar to the programming errors previously discussed, human errors are difficult to estimate.  
However, facilitative measures such as education, a good work environment, a reduction in task complexity, and 
improved personnel selection as well as control measures such as self-checking, external checking, inspections, and 
legal sanctions have proved successful in reducing human errors.24 

Aleatory 

Aleatory uncertainty is inherent variation associated with a physical system or environment under consideration.  
Aleatory uncertainty goes by many names: variability, irreducible uncertainty, inherent uncertainty, stochastic 
uncertainty, intrinsic uncertainty, underlying uncertainty, physical uncertainty, probabilistic uncertainty, noise, risk, 
type A uncertainty, and de re.28,31,26,12,2  Aleatory uncertainties can typically be singled out from other uncertainties 
by their representation as distributed quantities that can take on values in an established or known range, but for 
which the exact value will vary by chance from unit to unit or time to time.  The mathematical representation most 
commonly used for aleatory uncertainty is a probability distribution.27  This distribution could be based on a 
frequency distribution quantified by actual measurements, statistical estimations, or by expert opinion.  A decision-
maker (such as an engineer or designer) has little control over aleatory uncertainty in the design and development of 
complex systems.  Examples include the strength or exact dimension of a component where the manufacturing 
processes are well understood but variable and the parts have yet to be produced. 

As was discussed in the first half of this paper, there is much disagreement about the distinction between aleatory 
and epistemic uncertainty.  It has been argued that all uncertainty is epistemic: that aleatory uncertainties, 
represented by distributions, are used purely because of our lack of knowledge or understanding of a fundamental 
underlying process or because we choose not to learn about that underlying process.  As an example, consider the 
tossing of a fair coin.  This activity is represented by the discrete binomial (Bernoulli) distribution: either it lands 
heads (1, true, yes, etc.) or tails (0, false, no, etc.).  However, flipping a coin is not truly a random activity.  In 
theory, a sophisticated model based on which side of the coin is initially facing up, the strength and angle of the coin 
flip, the wind resistance, gravity, and so on could be created to accurately determine whether the coin lands heads or 
tails.  Although this sophisticated model would likely be influenced by minute differences in initial conditions, the 
remaining uncertainty in the coin flip would now be epistemic.  Likewise, a quantity may legitimately be random to 
one person, but deterministic to another who knows and understands the underlying model or process.  For example, 
a random number generated by a computer does indeed appear random to the vast majority of people but completely 
predictable to those who know the algorithm being used to generate the value.  Depending on the model being used 
and the criticality of the variable, it might not be worth developing sophisticated models such as the coin-flip model 
described and instead represent that variable as an aleatory uncertainty. 

Interaction 

Interaction uncertainty arises from unanticipated interaction of many events and/or disciplines, each of which might, 
in principle, be or should have been foreseeable.  Potential techniques to deal with this type of uncertainty are 
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simulation, multidisciplinary design optimization (MDO), and complexity science.  Interaction uncertainty can also 
arise due to disagreement between informed experts about a given uncertainty (such as a design or requirement) 
when only subjective estimates are possible or when new data is discovered that can update previous estimates.  
Weighted averages, Bayesian techniques, and Dempster-Shafer theory have been used to handle this type of 
uncertainty.17,28  Interaction uncertainty is significant in complex multidisciplinary systems such as spacecraft which 
may have many subsystems, variables, and experts involved in the design and development.   

Conclusions and Future Works 

Uncertainty remains a fertile ground for research due to its broad applicability to so many diverse fields.  The first 
half of the paper provided a summary of classifications and definitions of uncertainty in social sciences, physical 
sciences, and engineering.  In the case of engineering, specifically the conceptual (preliminary) design and 
development of complex systems, a balance must be made between a theoretically rigorous classification and 
definition and a classification and definition that can actually be implemented in a real-world setting.  The 
classification provided in the second-half of the paper attempts to achieve this balance.  It should be noted that in 
conceptual design it is arguably more important to determine the significant sources of uncertainty than identifying 
and quantifying all uncertainty sources.  Hence, some of the uncertainties that were defined may be unimportant in 
certain cases.  However, it is unclear on how to know this a priori.  Research into this issue by the author has 
commenced in conjunction with continued investigation into mathematical techniques to propagate and mitigate the 
different types of uncertainty in conceptual (preliminary) design.38,39,40  The ultimate goal of this research will be a 
formal method for propagating and mitigating the effect of uncertainty that can be applied to any complex 
multidisciplinary engineering system.  
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