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Abstract Bacteriocins from lactic acid bacteria (LAB)
are a diverse group of antimicrobial proteins/peptides,

offering potential as biopreservatives, and exhibit a broad

spectrum of antimicrobial activity at low concentrations
along with thermal as well as pH stability in foods. High

bacteriocin production usually occurs in complex media.

However, such media are expensive for an economical
production process. For effective use of bacteriocins as

food biopreservatives, there is a need to have heat-stable

wide spectrum bacteriocins produced with high-specific
activity in food-grade medium. The main hurdles con-

cerning the application of bacteriocins as food biopreser-

vatives is their low yield in food-grade medium and time-
consuming, expensive purification processes, which are

suitable at laboratory scale but not at industrial scale. So,

the present review focuses on the bacteriocins production
using complex and food-grade media, which mainly

emphasizes on the bacteriocin producer strains, media

used, different production systems used and effect of dif-
ferent fermentation conditions on the bacteriocin produc-

tion. In addition, this review emphasizes the purification
processes designed for efficient recovery of bacteriocins at

small and large scale.

Keywords Bacteriocin ! By-products ! Food-grade

media ! Cell immobilization ! Purification

Introduction

The preservation of foods is still considered as an important

issue all over the world, irrespective of the developed and
developing countries. The ribosomally produced peptides

with antimicrobial activity from lactic acid bacteria (LAB)

[25, 26] have attracted considerable attention to be used as
natural food biopreservatives due to their bactericidal effect

against many food spoilage and pathogenic bacteria [29, 62],

without any toxic effect to human beings [22]. In addition,
they are heat tolerant, active at acidic pH and offer no flavour

or textural changes when used as biopreservatives in dif-

ferent food systems. According to Muriana [79], to inhibit
pathogenic or spoilage microorganisms, bacteriocinogenic

strains or partially purified bacteriocins can be added to

foods. However, the effectiveness of bacteriocins may be
reduced by different factors [57, 79]. First, the minimum

inhibitory concentration differs widely among bacteriocins

and sensitive strains [79]. Secondly, the activity spectrum of
bacteriocins produced by Gram-positive bacteria is usually

limited. These are not active against Gram-negative bacte-
ria. As far as we know, only nisin and pediocins are the

unique bacteriocins approved as food additives [30, 49] and

are the most studied, not only because they exhibit a broad
spectrum of activity, but also because they are bactericidal at

low concentrations and exhibit thermal and pH stability in

foods [29, 86]. Nisin, is FDA approved, used in more than 48
countries as natural food preservatives [22, 30]; however,

pediocins, a group of class IIa bacteriocins produced by

Pediococcus strains, have gained great attention in recent
years and are extensively studied as well as well character-

ized [25, 59, 60]. Pediocin as potential food biopreservative

have a wide inhibitory spectrum of activity against Gram-
positive bacteria, including both spoilage and pathogenic

organisms, such as Listeria monocytogenes, Enterococcus
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faecalis, Staphylococcus aureus and Clostridium perfrin-

gens [31, 68, 100]. Pediocin-like bacteriocins (36–48 resi-
dues) share 40–60 % amino acid sequence similarity when

the corresponding sequences are aligned. They contain two

structural regions, a highly conserved N-terminal region and
a less conserved C-terminal region (residues 18 and on). The

N-terminal region of all pediocin-like bacteriocins are cur-

rently identified containing two cysteines, joined by a
disulphide bond, in a motif known as the ‘‘pediocin box’’:

YGNGVX1CX2K/NX3X4C, with X1–4 representing polar
uncharged or charged residues [61, 89]. Among these bac-

teriocins, pediocin PA-1/AcH was shown to have an extra

C-terminal disulphide bond that has been attributed to
improve its potency at elevated temperatures and to widen

its antibacterial spectrum [36]. Recently, two pediocins

produced by Pediococcus acidilactici NCDC 252 and Ped-
iococcus pentosaceus NCDC 273 (GenBank Acc No.

FJ825757.1) were characterized and found identical to

pediocin PA-1 at nucleotide sequence level [74, 75].
Bacteriocins like pediocin PA-1/AcH production have

been extensively studied using various fermentation strate-

gies with both free and immobilized cells in complex media
[80], which promote abundant growth and relatively high

bacteriocin levels; nevertheless, it seems more economical

to use some of the by-product of food industry as the raw
material as culture media [2, 21, 49, 51, 78, 88]. One of the

main problems concerning the application of bacteriocins as

food biopreservatives is their low yields and high cost of
production and purification. Another is bacteriocins pro-

duced using complex media like de Man Rogosa Sharpe

(MRS) medium is not food grade, so an approach need to be
developed using food-grade media like by-products of dairy

and food industry to produce food-grade bacteriocins. Low

yields and high costs of production and purification are
major bottlenecks for the commercial production of bacte-

riocins. Thus, for its economical use in foods, bacteriocins

need to be produced in large amounts. Whey and whey
permeate powders may serve as the basis of food-grade

inexpensive fermentation media formulations and require

minimum nutritional supplementation for the production of
bacteriocins. Whey, which is a by-product of the dairy

industry, provides an excellent growth medium for LAB

bacteria as it has a high biological oxygen demand. It has
been widely used for the production of various compounds

including organic acids, single-cell protein, enzymes, etha-

nol [44] and bacteriocins [24, 45, 52–54, 68].
In addition, for developing bacteriocin for food biopre-

servation, it is necessary to produce it in purified form on a

large scale. The purification at the industrial level is the
main bottleneck for application of bacteriocins as biopre-

servative. This is due to the purification protocols which

work well at laboratory-scale volumes but are not suitable
at industrial scale due to expensive purification processes.

In this review, we summarized and discussed all the

available information regarding the bacteriocins production
in complex and food-grade media and the techniques uti-

lized for their recovery and purification.

Bacteriocin Production Using Complex
and Food-Grade Media

Reports on lactic acid bacteria indicate the essential influ-
ence of temperature, pH and media composition on bacte-

riocin production [27, 96, 101]. Several studies have

compared bacteriocin batch production by LAB strains on
different complex media and have found that MRS and

Elliker broths were the best media for the growth of LAB

[27, 53, 82], which promote abundant growth and relatively
high bacteriocin levels. However, such media are not suit-

able from financial point of view. In addition, bacteriocins

produced using MRS media is not food-grade and some
medium components (e.g. large amounts of proteins) may

interfere with the subsequent bacteriocin purification.

Necessity for reduction of pollutants in the environment and
the need to maximize returns on raw materials have

encouraged the search for new ways of using food industry

and dairy industry waste as the basis of culture media.
Possible alternatives include by-products such as milk whey

and mussel-processing wastes [2, 51]. The most important

feature of these substrates is their content of peptides that
can act as inducers or precursors of the bacteriocin bio-

synthesis [27]. Moreover, these by-products are rich source

of nutrient such as sugars and proteins; thus, it has been
used as suitable culture medium for production of nisin and

pediocin [45, 48], and lactocin 705 [95]. Whey was found to

support the bacteriocin production by P. acidilactici NRRL
B-5627, but the yield was lower than that obtained in MRS

media [50]. By-products of food industry were effectively

utilized for production of antimicrobial activity by Bacillus
sp. P11 [16]. Jozala et al. [64] utilized supplemented pow-

der milk whey as a culture medium for developing Lacto-

coccus lactis cells and nisin production. These studies
showed that biological processing of dairy and food

industry by-product can be considered as one of the prof-

itable utilization alternatives, generating high-value bio-
products and stimulates researches for its use.

Factors and Conditions for Bacteriocin Production

Bacteriocin Producer Strain

Different expression levels of bacteriocin genes in different

strains along with the different activity of enzymes
responsible for converting inactive bacteriocins into mature
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Table 1 Bacteriocins production using free/immobilized producer strains in different production systems

Producer strain Bacteriocin Media Production
system

Bacteriocin production Free/
immobilized
cell

References

Pediococcus
acidilactici
PO2

Pediocin
PO2

MRS broth Continuous
production in
a packed-bed
bioreactor

6,400 AU/ml Immobilized
cell

[18]

Leuconostoc
mesenteroides
subsp.
mesenteroides
UL5

Mesenterocin Supplemented MRS,
whey and whey
permeate with YE
(2 %), tween 80
(0.1 %), MnSO4

(0.005 %), MgSO4

(0.01 %)

Batch culture 4,096 AU/ml(MRS),
2,048 AU/ml(whey), 2048
AU/ml(whey permeate)

Free cell [24]

Lactococcus
lactis subsp.
lactis and P.
acidilactici
UL5

Nisin Z and
pediocin

Whey permeate (6 %)
with YE (2 %) and
tween 80 (0.1 %)
[Glucose (0.5 %) added
to SWPM]

Mixed-strain
batch culture

Nisin and pediocin after 18 or
16 h incubation 3,000 and
730 AU/ml or 1,060 and
1,360 AU/ml, respectively

Free cell [45]

L. lactis UL 719 Nisin Z Whey permeate Powder
(6 %) supplemented
with 0.2 M KCL

Continuous
fermentation

Maximum Nisin production
during continuous free cell
and immobilized cell with
aeration is 2,560 and
2,430 IU/ml, respectively

Free cell and
immobilized
cell

[33]

L. lactis UL719 Nisin Z Whey permeate (6 %)
supplemented with
0.2 M KCL

Repeated-
cycle batch
cultures

8,200 IU/ml Immobilized
cell

[6]

L. lactis UL 719 Nisin Z Whey permeate powder
(6 %) with aeration
supplemented with YE
(1 %) and tween 80
(0.1–0.4 %)

Batch
fermentation

8,200 AU/ml (without
aeration), 41,000 AU/ml
(with aeration)

Free cell [2]

P. acidilactici
UL 5

Pediocin PA-
1

MRS broth supplemented.
(1 % glucose) and whey
permeate (SWP)
medium

Repeated-
cycle batch
cultures
(RCB)

By free cell, 187 and 342 AU/
ml/h in SPM and MRS resp.
By immobilized cells, 5,461
and 2,048 AU/ml/h,
respectively

Free and
immobilized

[80]

L. lactis subsp.
lactis CECT
539 and P.
acidilactici
NRRL B-5627

Nisin and
pediocin

Diluted whey (DW) and
concentrated whey
(CW)

Batch culture Bacteriocin production from
two strains were slightly
higher in DW than in CW
and production is lower as
comparison to MRS medium

Free cell [48]

L. lactis subsp.
lactis CECT
539 and P.
acidilactici
NRRL B-5627

Nisin and
pediocin

Influence of pH drop on
bacteriocin production
in non-buffered whey
and buffered whey

Batch culture Nisin and pediocin titres in
whey 6.2 and 9.7 times lower
than In MRS broth,
respectively

Free cell [53]

L. lactis subsp.
lactis CECT
539 and P.
acidilactici
NRRL B-5627

Nisin and
Pediocin

Whey supplemented with
lactose and 4 nitrogen
sources (YE, casitone,
NH4Cl and glycine)

Batch culture YE and casitone increase
pediocin titre from 55 BU/ml
to 195 and 185 BU/ml,
respectively, and nisin from
21 BU/ml to 74 and 59 BU/
ml, respectively

Free cell [48]

L. lactis subsp.
lactis
ATCC11454

Nisin Whey permeate
supplemented with YE
or casein hydrolysate

Continuous
fermentation
using a
packed-bed
bioreactor

Maximum nisin titre
5.1 9 104 AU/ml

Immobilized
cells

[70]
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bacteriocins are responsible for different levels of pro-

duction of nisin and leucocin Lcm1 as compared to ped-
iocin AcH [98]. A ‘‘ceiling’’ for bacteriocin production has

been observed. Kim et al. [65] observed ‘‘ceiling or

threshold’’ for nisin and De Vuyst et al. [28] for amy-
lovoryn L471 production. Kim et al. [65] demonstrated the

‘‘ceiling or threshold’’ for nisin production is affected by

both nutrient availability and nisin inhibition. Majority of
pediocin-producing strains are unable to hydrolyse milk

sugar lactose as a carbon source present in the medium [93,
94]. Most strains ferment glucose, ribose, galactose and

fructose to DL-lactate. A few examples indicating Pedio-

cocci having b-galactosidase (b-gal) activity are reported
[7], which may be able to utilize lactose present in whey

and grow efficiently with effective bacteriocin production.

Halami and Chandrashekar [56] found that a strain of P.
acidilactici C20 had an ability to produce quantifiable

amounts of pediocin C20 on whey permeate. The molec-

ular basis for the presence of a b-gal like gene was shown
by DNA dot-blot technique followed by b-gal assay on

native polyacrylamide gel as experimental evidence for

lactose hydrolysis. Production of pediocin C20 was found
to be onefold to 1.5-fold excess in lactose-based medium as

compared to medium with glucose. Optimized whey per-

meate supplemented with 2 % yeast extract gave cell
growth of 3.5, OD600 and pediocin C20 activity of

150 9 103 AU ml-1, equivalent to that obtained by growth

in commercial MRS broth. Bacteriocins production using
free/immobilized producer strains in different production

systems is shown in Table 1.

Media

Studies on complex media and food-grade media demon-
strated that bacteriocin production depends on the medium

composition (mainly those of C and N sources) [9, 24, 34,

82, 83, 99] and greatly influenced by nutritional parame-
ters, temperature, pH (initial and final) and aeration levels.

Biswas et al. [9] showed that glucose, followed by sucrose,

xylose and galactose are the best carbon sources for the
production of pediocin AcH in an unbuffered medium. Li

et al. [67] evaluated the effect of medium components on

nisin production and cell growth, to search for the optimal

medium composition for a higher nisin yield, which
resulted in double yield as compared to that in CM med-

ium. Among the different by-products (feather meal, grape

bagasse, an industrial fibrous soybean residue and cheese
whey) tested, cheese whey served as the best medium for

maximum bacteriocin production and further increasing

whey concentration resulted in increase of bacteriocin
production [21]. Daba et al. [24] investigated the effects of

various parameters (temperature, pH, nutrients and sur-
factants) on production and activity of mesenterocin 5,

produced by Leuconostoc mesenteroides subsp. mesen-

teroides UL5. This experiment proved that the large
quantities of bacteriocin can be produced in whey and

whey permeate medium supplemented with yeast extract in

the presence of the surfactant (0.1 %). Tween 80 was a
major factor in increasing mesenterocin 5 production and

specific production might be due to the effect of the sur-

factant on cell membrane permeability, with acceleration in
diffusion of the bacteriocin. Whey supported the growth of

Lactococcus lactis subsp. lactis CECT 539 and P. acidi-

lactici NRRL B-5627 and bacteriocin production by the
two strains, but biomass and bacteriocin productions were

lower than those obtained on MRS broth. However, sup-

plementation of the whey with lactose and four different
nitrogen sources further increased bacteriocins production

by the two strains [48].

Effect of Fermentation Conditions

Krier et al. [66] showed that temperature and pH had a strong
influence on the production of two bacteriocins by L. mes-

enteroides. Cladera-Olivera et al. [21] tested the effect of

three variables (temperature, initial pH and whey concen-
tration) on bacteriocin production by Bacillus licheniformis

P40 on cheese whey medium and showed that, in the range

studied, the three variables have a significant effect on
bacteriocin production with maximum bacteriocin produc-

tion at initial pH between 6.5 and 7.5 and temperature

between 26 and 37 "C when the cheese whey concentration
was 70 g l-1. Conclusively, increasing whey concentration

resulted in increased bacteriocin production, with an activity

Table 1 continued

Producer strain Bacteriocin Media Production
system

Bacteriocin production Free/
immobilized
cell

References

P. acidilactici
C20

Pediocin C20 Whey permeate
supplemented with 2 %
YE

Batch culture 150 9 103 AU/ml Free cell [56]

Bacillus
licheniformis
P40

Bacteriocin Cheese whey powder
supplemented with YE
(1 %)

Batch culture 3,200 AU/ml Free cell [21]
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at the maximum whey concentration tested. Aeration during

the continuous fermentation by L. lactis UL719 in supple-
mented whey permeate (SWP) resulted in increased nisin Z

production [33]. Goulhen et al. [45] studied the conditions for

high production of nisin Z and pediocin during pH-controlled,
mixed-strain batch cultures in SWP medium with L. lactis

subsp. lactis biovar. diacetylactis UL719, a nisin Z producer

strain, and variant T5 of P. acidilactici UL5, a pediocin-
producing strain resistant to high concentrations of nisin. This

study demonstrated that the high productions of both nisin Z
and pediocin were obtained after 18 or 16 h incubation during

mixed cultures, with titres of 3,000 and 730 AU ml-1, or

1,060 and 1,360 AU ml-1, respectively, corresponding to
approximately 75 and 55, or 25 and 100 mg l-1 of pure nisin

Z and pediocin, respectively. In pure cultures, nisin Z and

pediocin productions were higher than in mixed cultures, and
maximum activities were obtained after 10 h incubation, with

approximately 10,000 AU ml-1 (250 mg l-1 pure nisin Z)

and 2,500 AU ml-1 (190 mg l-1 pure pediocin). Amiali et al.
[2] found that aeration have a large stimulatory effect on nisin

Z production by L. lactis UL719 in a yeast extract/tween

80-SWP during batch fermentation.

Production Systems

Bacteriocin production was mostly studied in batch culture

with synthetic media (MRS broth). Guerra et al. [47]

reported increased cell growth and pediocin production by
re-alkalized fed-batch fermentation by P. acidilactici NRRL

B-5627 on whey compared with batch fermentation on MRS

broth. The re-alkalized fed-batch culture was characterized
by higher biomass (6.57 g/l) and pediocin [517.6 BU (bac-

teriocin activity units)/ml] concentrations compared with

the batch processes on MRS broth (1.76 g/l and 493.2 BU/
ml), DW (0.17 g/l and 57.7 BU/ml), DWG (0.14 g/l and

53.6 BU/ml), DWYE (1.43 g/l and 187.6 BU/ml) and

DWGYE (1.28 g/l and 167.3 BU/ml) media. Guerra et al.
[46] compared cell growth and pediocin production by P.

acidilactici NRRL B-5627(on MRS broth and a culture

medium from mussel-processing wastes (MPW)) using
batch and two fed-batch fermentations on MPW with re-

alkalization cycles. Mathematical models were developed to

describe fed-batch production of biomass and pediocin by P.
acidilactici. While cell growth was dependent on pH

change, nitrogen and phosphorous availability and product

inhibition (lactic acid, ethanol and butane-2, 3-diol), ped-
iocin production was dependent on both growth and the final

pH reached in each re-alkalization period. Cho et al. [18]

developed a method for the continuous production of ped-
iocin PO2 using immobilized P. acidilactici PO2 in a

packed-bed bioreactor. Conditions for the optimum pro-

duction of pediocin PO2 by the immobilized cells were also

investigated [60, 72]. The authors obtained the maximum

bacteriocin activity of 6,400 AU/ml when the medium was
fermented with dilution rates of at least 1.19 day-1 and pH

controlled at 4.5. This bacteriocin is a potent inhibitor of

Listeria monocytogenes, a widespread food-transmitted
pathogen [59, 60, 68]. Bertrand et al. [6] studied high nisin Z

production during repeated-cycle pH-controlled batch cul-

tures using L. lactis subsp. Lactis biovar. diacetylactis
UL719 immobilized in k-carrageenan/locust bean gum

gel beads in SWP. The RCB culture process developed in
this study was stable and resulted in high nisin Z pro-

duction (8,200 IU ml-1) and volumetric productivity

(5,730 IU ml-1 h-1) at the end of 1-h incubation cycle.
Naghmouchi et al. [80] studied the production of pediocin

PA-1 by P. acidilactici UL5 cells immobilized in k-carra-

geenan/locust bean gum gel beads during repeated-cycle
batch (RCB) culture with pH control in MRS broth supple-

mented with 1 % glucose and whey permeate medium. The

maximum pediocin PA-1 activity obtained during RCB
fermentation in SWP medium was 4,096 AU ml-1. Liu

et al. [70] investigated the continuous production of nisin in

laboratory media and whey permeate using a packed-bed
bioreactor. Lactococcus lactis subsp. lactis ATCC 11,454

was immobilized by natural attachment to fibre surfaces and

entrapment in the void volume within spiral wound fibrous
matrix. The authors observed optimal nisin activity at pH

5.5, 31 "C, 0.2–0.3/h dilution rate, and 30 g/l lactose in

M17. The maximum nisin titre was 2.6 9 104 AU/ml. The
bioreactor was fed whey permeate, supplemented with

casein hydrolysate, and growth of L. lactis and associated

nisin production were monitored. Optimal conditions for
continuous nisin production in whey permeate were pH 5.5,

31 "C, 10–20 g/l casein hydrolysate and 0.2/h dilution rate.

Under these conditions, a maximum nisin titre of 5.1 9 104

AU/ml was observed. Bhugaloo-Vial et al. [8] investigated

the production of divercin, a bacteriocin active against

Listeria, by whole cells of Carnobacterium divergens V41
by three means: continuous cultivation with free cells; with

cells immobilized in calcium-alginate beads packed in a

plug-flow bioreactor and with a membrane bioreactor. The
productivity and bacteriocin concentrations of the systems

were compared. Immobilized cells presented the best per-

formances with[105 AU l-1 h-1, which can be compared
to the 2.8 9 103 AU l-1 h-1 of the batch system.

Strategies for Recovery and Purification of Bacteriocins

To develop bacteriocins for food biopreservation, it is nec-
essary to produce these in purified form on a large scale. As

crude form of bacteriocins may contain the components of

media, which are undesirable when bacteriocins are to be
used for biopreservation. Because bacteriocins are secreted
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Table 2 Different strategies used for the bacteriocin purification with their recovery and purification fold

Bacteriocin Media used Steps of purification Yield/
recovery

Purification
fold

References

Pediocin PA-1 MRS broth Cation-exchange chromatography 85 % ND [92]

Reverse-phase HPLC (RP-HPLC) 110 %

Enterocin EJ97 CM broth (101) Cation-exchange chromatography 59.56 % 8.46 [71]

Reverse-phase HPLC (RP-HPLC) 48.85 % 30.8

Carnocin KZ213 MRS broth (101) Hydrophobic interaction
chromatography

0.58 mg/l 911 [87]

Cation-exchange chromatography 34,000

Enterocin AS-48 CM broth (251) Cation-exchange chromatography 95.99 % 11.87 [1]

Reverse-phase HPLC (RP-HPLC) 74.95 % 24.3

Nisin Z MRS broth (51) Expanded-bed ion-exchange
chromatography

90 % 31 [17]

Mesenterocin Y105 MRS broth Cation-exchange chromatography 120 lg/l 60 [55]

Hydrophobic interaction
chromatography

HPLC

AMP by L. sakei MRS broth (81) Acid extraction 3.33 % 2.9 [14]

Cation-exchange chromatography 3.2 % 55.2

Enterocin E-760 Brucella broth (6.51) Cation-exchange chromatography ND ND [69]

Hydrophobic interaction
chromatography

Leucocin C MRS broth Cation-exchange chromatography ND ND [37]

Reverse-phase HPLC (RP-HPLC)

Pediocin PA-1 MRS broth Centrifugation 73 % ND [5]

Cation-exchange chromatography

Hydrophobic interaction
chromatography

Plantaricin ST31 MRS broth Centrifugation 100 % 1 [86]

Cation-exchange chromatography 5.94 % 110

Pediocin from
P. acidilactici MM33

MRS broth Centrifugation 100 % 1 [72]

Cation-exchange chromatography 50.7 % 725

Rotavapor 40 % 5,725

Freeze drying 50.7 % 36,500

Macedocin Skim milk with yeast
extract

Centrifugation ND ND [42]

Ammonium sulphate precipitation

Reverse-phase HPLC

Acidocin CH5 MRS broth Centrifugation 100 1 [19]

Solid-phase extraction 3.9 0.2

Cation-exchange chromatography 4.0 66

Hydrophobic interaction
chromatography

2.7 49

Reverse-phase HPLC (RP-HPLC) ND ND

AMP from L. helveticus Whey Centrifugation 120 AU/ml 1 [10]

Ultrafiltration 1.3

Precipitation 2.3

Gel-filtration chromatography 10.3

Ion-exchange chromatography 27.3
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into the culture medium, most strategies start with a step to

concentrate bacteriocins from the culture supernatant, such
as either pH-dependent adsorption of bacteriocins on pro-

ducer cells [81] or heat-killed producer bacteria [13], diat-

omite calcium silicate (Micro-Cel) [23], rice hull ash or
precipitation with silicic acid [63], ammonium sulphate [13]

or ethanol [95]. Although these procedures are used princi-

pally to reduce the working volume, these typically do not
provide a high degree of purity. Therefore, subsequent steps

of preparative isoelectric focusing [94] and/or multiple

chromatographic separations, including gel-filtration [38,
73], cation-exchange [69, 77, 92], hydrophobic interaction

[5, 20, 69, 87], and reverse-phase liquid chromatography

[1, 35, 77, 92], are necessary to achieve significant purifi-
cation of the bacteriocins. The different strategies used for

the bacteriocin purification with their recovery and purifi-

cation fold are shown in Table 2.
Majorly, three major strategies or methods for the purifi-

cation of bacteriocins to homogeneity can be distinguished:

conventional multi-step method, simple three-step method

and single-step bed adsorption. Usually, but not always, the

protein yields are low in case of conventional methods. This is
probably due to the extra number of steps in the protocol,

leading to low yield which is one of the problems for the

purification of bacteriocins at the industrial level. This is due to
the purification protocols which work well at laboratory-scale

volumes but are not suitable at industrial scale. Purification of

bacteriocins using conventional methods based on laborious
series of subsequent steps of ammonium sulphate precipita-

tion, ion-exchange, hydrophobic interaction, gel-filtration,

and reversed-phase high-pressure liquid chromatography.
Piva et al. [85] achieved purification of pediocin A from the

culture of P. pentosaceus FBB61 by dialysing the cell-free

culture supernatant against PEG 20000, followed by butanol
extraction and electroendosmotic preparative electrophoresis,

with a yield of 3.9 % and 7,834-fold purification. Cintas et al.

[20] purified pediocin L50 from culture of P. acidilactici
L50 by subjecting the precipitates obtained from the

ammonium sulphate precipitation of cell-free culture super-

natant to the cation-exchange chromatography, followed by

Table 2 continued

Bacteriocin Media used Steps of purification Yield/
recovery

Purification
fold

References

Bacteriocin by
E. faecium MMT21

MRS broth Cation-exchange chromatography ND ND [43]

Hydrophobic interaction
chromatography

Reverse-phase HPLC (RP-HPLC)

Bacteriocin by
Leuconostoc
mesenteroides E131

MRS broth Centrifugation ND 1 [90]

Ammonium sulphate precipitation 5.5

Resource S 4.6

Ammonium sulphate precipitation 0.6

Reverse-phase HPLC (RP-HPLC)-I 24.7

Reverse-phase HPLC (RP-HPLC)-II 9.3

Sakacin P MRS broth Macroporous monolith column 87 % 156 [33]

Bacteriocin from
Carnobacterium
divergens

MRS broth Centrifugation 100 % 1 [76]

Triton X-114 phase partitioning 0.1 % ND

Cation-exchange chromatography 0.04 % 13,000

Sakacin A MRS broth Centrifugation 100 % ND [58]

Ammonium sulphate precipitation 96 %

Cation-exchange chromatography 14 %

Hydrophobic interaction
chromatography

51 %

FPLC 83

Pediocin SA-1 MRS broth Centrifugation ND ND [3]

Tricin SDS-PAGE

Pediocin PD-1 MRS broth Centrifugation 100 % 1 [4]

Precipitation 86 % 8

Dialysis

Lyophilization 55 % 6

Methanol–chloroform extraction 47 % 11

Cation-exchange chromatography 34 % 1,700
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hydrophobic interaction chromatography and reverse-phase

HPLC, resulting in 80 % yield. Casadei et al. [15] collected
culture supernatant of P. pentosaceus FBB61, filtered through

0.45-lm pore-size filters, concentrated by polyethylene glycol

dialysis and then concentrated solution was partially purified
using ion-exchange chromatography. This procedure led to

the recovery of 35 % of the activity present in the culture

supernatant, indicating that the ion-exchange chromatography
is an efficient purification method. Because of the number of

laborious and time-consuming steps along with the low yield,
there was a need to develop efficient protocols which require

less time with efficient recovery.

Many simple three-step protocols have been developed,
including (1) ammonium sulphate precipitation, (2) chloroform/

methanol extraction/precipitation, and (3) cation-exchange/

hydrophobic interaction/reverse-phase high-pressure liquid
chromatography for the purification of bacteriocins from

complex media on large scale. Ghrairi et al. [43] purified

bacteriocins from culture supernatant of E. faecium MMT21
to homogeneity using a three-step procedure consisting of

cation-exchange chromatography, C18 Sep-pack chroma-

tography and C18 reverse-phase high-performance liquid
chromatography. Recently, a simple and rapid protocol was

developed in our laboratory which is suitable for small-scale

purification and may prove suitable for large-scale purifi-
cation of pediocin, which involved ammonium sulphate

precipitation (80 % saturation) of cell-free culture super-

natant at isoelectric point of pediocin PA-1 (pH 8.8),
followed by cation-exchange chromatography using

SP-Sephadex [97]. Similarly, pediocin PA-1 produced by

P. acidilactici was purified by subjecting cell-free culture
supernatant to the cation-exchange chromatography, fol-

lowed by hydrophobic interaction chromatography, result-

ing in the yield of 73 % [5]. All these protocols involve the
use of centrifugation for obtaining the cell-free culture

supernatant, which is processed further for purification. At

the industrial scale, centrifugation is considered to be a
major bottleneck. Many protocols for the bacteriocin puri-

fication from complex culture media have been developed

on large scale, skipping centrifugation step and exploiting
the cationic and hydrophobic nature of bacteriocins. Uteng

et al. [92] developed a rapid two-step procedure suitable for

large-scale purification of pediocin-like bacteriocins and
other cationic antimicrobial from complex culture medium

of P. acidilactici LMG 2351 in which the bacterial culture

was applied directly on a cation-exchange column, and then
on a low-pressure reverse-phase column. The final bacte-

riocin preparation was more than 90 % pure as judged by

analytical reverse-phase chromatography and capillary
electrophoresis. Guyonnet et al. [55] developed the method

for the rapid purification of mesenterocin Y105, by applying

the overnight culture supernatant of L. mesenteroides Y105
to the carboxy-methyl cellulose column, followed by C18-

cartridge and C8 Kromasil analytical HPLC column with a

yield (60 %) and appeared to be at least 95 % pure. Fimland
et al. [37] developed a rapid two-step procedure for the

purification of leucocin C by applying an overnight grown

culture of L. mesenteroides 6 directly on SP Sepharose Fast
Flow cation-exchange column, followed by low-pressure

reverse-phase column chromatography. Abriouel et al. [1]

recovered enterocin AS-48 from Enterococcus faecalis
subsp. liquefaciens A-48-32 by adding Carboxymethyl

Sephadex CM-25 gel slurry to cultured broths followed by
loading of active fractions on a reversed-phase high-per-

formance liquid chromatography (RP-HPLC) column. By

using a combination of cation-exchange and reversed-phase
chromatography, ca. 75 % of the total activity in the cultured

broths could be recovered. Lopez et al. [71] recovered en-

terocin EJ97 from cultured broth by direct mixing with the
cation exchanger Carboxymethyl Sephadex CM-25 without

previous separation of cells by centrifugation. The yield of

this purification step was 59.46 %. Elute was further sub-
jected to reverse-phase chromatography to obtain purified

bacteriocin. The yield of this step was very high, and the

specific activity of the bacteriocin was similar to the reported
specific activity of 1.60 AU/g of protein for purified

enterocin EJ97. This procedure is time saving and allows

easier processing of large culture volumes. Line et al. [69]
purified the enterocin E-760 by cation-exchange chroma-

tography followed by hydrophobic interaction chromatog-

raphy. Saint-Hubert et al. [87] developed a protocol for
large-scale purification of carnocin KZ 213 from Carno-

bacterium piscicola 213 by loading the entire batch on the

butyl Sepharose 4 Fast Flow column for hydrophobic inter-
action chromatography and then the eluted fraction was

applied to the cation-exchange column. This protocol leads to

a complete recovery of carnocin KZ 213 with 95 % purity and
to a concentration factor of 83. From 10 l culture supernatant,

5.8 mg carnocin KZ 213 could be produced with a specific

activity of 8,500 UA g-1. The protocol is easy to implement
for larger volumes. Skipping the centrifugation step resulted

in the efficacy of purification and also reduced the time

required for purification. However, Millette et al. [77] purified
the bacteriocin produced by P. acidilactici MM33 using a

modified version of the procedure described by Uteng et al.

[92], in which culture of P. acidilactici in MRS broth was
centrifuged at 8,0009g and 4 "C, and the supernatant was

collected and vacuum filtered through a 0.20-lm pore-size

nylon filter, which was then loaded directly on a SP Fast Flow
cation-exchange column. About 50 % of total pediocin

activity was recovered with a specific activity 725-fold higher

than that of the cell-free supernatant.
Third, bacteriocins can be isolated through a unique unit

operation, i.e. expanded-bed adsorption, using a hydrophobic

interaction gel, after maximizing the bioavailable bacteriocin
titre through pH adjustment of the crude fermentation medium
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[11, 39, 84, 91]. Cheigh et al. [17] purified nisin Z by applying

unclarified culture broth of L. lactis A164 on an expanded-bed
ion-exchange chromatography and the fraction was eluted

with 0.15 M NaCl. This simple one-step purification process

resulted in 31-fold purification with a yield of 90 %. The
advantages of expanded-bed ion-exchange chromatography

includes reduced number of purification steps, shortened total

processing time, increased productivity, and operation con-
ditions such as high processing volume and high flow rate,

which allow it to be used in large-scale process. This method
may, therefore, provide a cost-effective alternative process for

scale-up purification of nisin Z over other multi-step processes.

Deraz et al. [32] captured bacteriocin directly from the non-
clarified fermentation broth of Lactobacillus sakei CCUG

42687 using macroporous octyl- and phenyl-monolith col-

umns and its screening demonstrated that at pH 6.2, about
80 % of the bacteriocin activity could be recovered with a

purification factor of 150–160 in the cell-free eluate. It presents

a promising approach for rapid analytical isolation of bacte-
riocins from numerous samples. Following the latter two

methods, which are more rapid than the first conventional

method and yet successful, several bacteriocins with interest-
ing industrial potential have been purified, such as amylovorin

L, enterocins, pediocins, nisin and macedocin [12, 40–42].

Conclusions

Bacteriocins can offer a promising role in the field of food

biopreservation, but there are many hurdles to overcome to

commercialize them on a large scale like production cost,
lengthy and costly purification techniques involved. These

hurdles can be overcome by using the food-grade media,

which are available as a by-product of food and dairy
industries like fish meal, grape waste, an industrial fibrous

soya bean residue, soya bean meal and cheese whey. The

costly production can be counteracted by suitable biopro-
cessing strategies designed for increasing yields and purity.

The purification protocols can be simplified by reducing

the number of steps required for the purification to the
minimum steps so that the protocol can be scaled up to the

large scale and at the same time remains cost-effective.

Further genetic engineering of the bacteriocin producer
strains may result in the enhanced expression of the bac-

teriocin, resulting in the high titre.
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