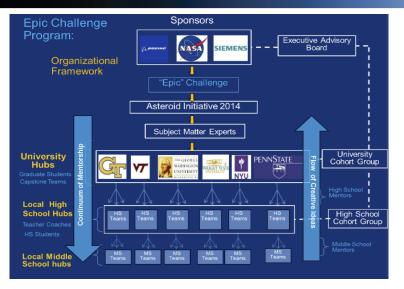


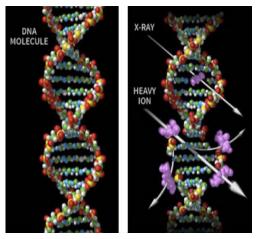
Radiation Shielding in Extravehicular Mobility Units

Institution: Wright State University


<u>Presenters:</u> Rachel Bruce, Ali Kadhim, Ahmad Kamel, Angelica Zampini

> <u>Advisor:</u> Amy Doll, Ph.D., P.E.

2 December 2014



ICED Grand Challenge: Asteroid Redirect Mission

Definition of Problem: Astronaut Radiation Exposure

- Cosmic radiation takes form of subatomic particles
- High speed particles tear through DNA molecules
- Can split DNA molecules or damage instructions for cell reproduction [14]

Figure: Image from [14].

Definition of Problem: Astronaut Radiation Exposure

Mission	Total Duration	Lunar Surface Duration	Average Radiation Dose*
Apollo 11	08 days, 03 hrs, 13 mins	21 hrs, 38 mins	0.18 rad
Apollo 12	10 days, 4 hrs, 31 mins	31 hrs, 31 mins	0.58 rad
Apollo 14	09 days, 01 min	33 hrs 31 mins	1.14 rad
Apollo 15	10 days, 01 hr, 11 mins	66 hrs, 54 mins	0.30 rad
Apollo 16	11 days, 01 hr 51 mins	71 hrs, 2 mins	0.51 rad
Apollo 17	12 days, 13 hrs, 51 mins	74 hrs, 59 mins	0.55 rad

Depth of Radiation Penetration and Exposure Limits for Astronauts and the General Public (in Sv)				
	Exposure Interval	Blood Forming Organs (5 cm depth)	Eyes (0.3 cm depth)	Skin (0.01 cm depth)
Astronauts	30 Days	0.25	1.0	1.5
	Annual	0.50	2.0	3.0
	Career	1-4	4.0	6.0
General Public	Annual	0.001	0.015	0.05

Figure: Radiation exposure on Apollo missions and exposure limits for astronauts vs. general public. Image from [5].

Definition of Problem: Astronaut Radiation Exposure

Measurements in millisieverts (mSv). Exposure is cumulative. Potentially fatal radiation sickness. Much higher risk of cancer later in life.

10,000 mSv: Fatal within days.

5,000 mSv: Would kill half of those exposed within one month.

.

•

2,000 mSv: Acute radiation sickness.

No immediate symptoms. Increased risk of serious illness later in life.

1,000 mSv: 5% higher chance of cancer.

400 mSv: Highest hourly radiation recorded at Fukushima . Four hour exposure would cause radiation sickness.

100 mSv: Level at which higher risk of cancer is first noticeable

No symptoms. No detectable increased risk of cancer.

20 mSv: Yearly limit for nuclear workers.

10 mSv: Average dose from a full body CT scan

9 mSv: Yearly dose for airline crews.

3 mSv: Single mammogram

2mSv: Average yearly background radiation dose in UK

0.1 mSv: Single chest x-ray

Figure: Image from [10].

Definition of Problem: The Nature of Radiation in Space

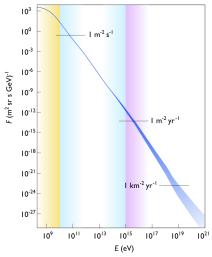


Figure: Flux F(E) as a function of energy E. Image from [6].

- High energy cosmic radiation spectrum.
- Cosmic radiation energy may exceed 10⁸ TeV!

$$\blacktriangleright \ F(E) \propto E^{-\gamma}$$

 $\gamma \approx 2.7 - 3.0.$

Current State of Things: Extravehicular Mobility Unit (EMU)

EMU Components:

- i. Helmet
- ii. Hard upper torso (HUT)
- iii. Lower torso assembly (LTA)
- iv. Arm assembly

Life Support Systems:

- i. Primary life support system (PLSS)
- ii. Liquid cooling and ventilation garment (LCVG)
- iii. Extravehicular visor assembly (EVVA)

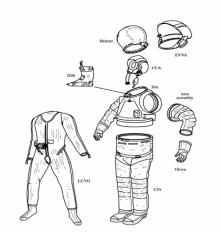
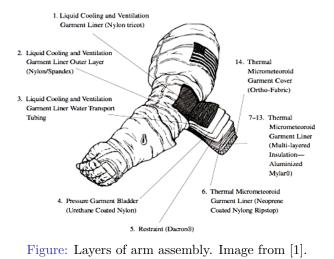



Figure: Components and life support systems of EMU. Image from [1].

Current State of Things: EMU Layers

Current State of Things: EMU Layers

Table: List of material, areal density and purpose of each EMU layer.

Layers	Material	$\begin{array}{c c} \mathbf{Areal} \\ \mathbf{Density} \\ (\mathbf{g/cm}^2) \end{array}$	Purpose
1	Nylon fabric	0.154	Inner layer of LCVG
2	Nylon fabric	0.154	Outer layer of LCVG
3	Nylon fabric	0.014	Pressure bladder
4	Polyester	0.021	Pressure restraint
5	Nylon fabric	0.025	Thermal insulation inner layer
6-12	Aluminized mylar	0.014	Thermal insulation system
13	Orthofabric [©]	0.049	Thermal insulation outer layer

Project Proposal: Outline

Solution:

Test and analyze potential material candidates to incorporate as additional layer of EMU.

Optimal Material Properties:

- i. High attenuation coefficient (i.e., radiation shielding)
- ii. In expensive (i.e., light weight)
- iii. Nontoxic
- iv. Pliable
- v. Thermally resistive

Project Material: Identified Potential Materials

Viable Materials:

- i. Boron nitride nanotube (BNNT)
- ii. Polyethylene
- iii. Aerogel multifoil

Impractical Materials:

i. BNNT with hydrogen (H₂)
ii. Demron[©]

Project Materials: Boron nitride nanotube (BNNT)

Figure: Sample of BNNT. Image from [8].

Project Materials: Boron Nitride Nanotube (BNNT)

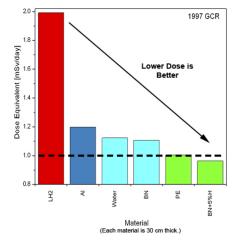


Figure: Comparison of different shielding material. Image from [7].

Project Material: Boron Nitride Nanotube (BNNT) with Hydrogen

Boron Nitride Nanotube (BNNT):

- i. Strongest fiber that will ever be made (along with carbon nanotube)
- ii. Maintains strength up to 900 °C ($\approx 1650^\circ {\rm F})$
- iii. High thermal neutron absorbing efficiency

Hydrogen (H_2) :

- i. Fragments heavy ions in galactic cosmic rays
- ii. Effectively stops protons in solar particle events
- iii. Absorbs thermal neutrons

Project Material: Polyethylene

Material Properties:

- i. High hydrogen content
- ii. Reduced collision fragmentation due to lack of large nuclei
- iii. High mass density

Figure: Sample of polythylene. Image from [12].

Project Material: Aerogel Multifoil

Material Properties:

- i. 95%air
- ii. Foil component slows and breaks up incident particles
- iii. Aerogel converts kinetic energy to thermal and mechanical energy

Figure: Sample of aerogel multifoil. Image from [11].

Project Material: Demron[©] Suit

Figure: Image from [13].

- Radiation blocking fabric
- Radiation attenuation comparable to lead shielding
- Lightweight and flexible
- Made of polyethylene and liquid metal

Table: List of candidate materials with properties (i.e., linear attn. μ , mass density ρ , thermal cond. k, molar mass M, cost C.) Table based on average values. Linear attenuation values taken at 1 GeV [2, 3, 4]. Other values taken from [15].

	BNNT w/ H ₂	Polyethylene	Aerogel	Demron
μ (cm ⁻¹)	0.03^{1}	0.02	0.02^{2}	0.05^{3}
ρ (g/cm ³)	1.55	0.95	0.24	3.14
$k (\mathbf{W}/\mathbf{m} \cdot \mathbf{K})$	600	0.5	0.02	0.2
M (g/mol)	26.83	28.03	208.33	28.03
C (\$/kg)	2.5 mil	6.00	420	300

¹Calculated with 41.07% B, 48.53% N, 5% H₂.

²Calculated with 95% air and 5% $Si(OCH_3)_4$.

³Taken at 1 MeV.

Project Methods: Resources

Facilities:

- ▶ Wright State Medical Imaging Lab
- Brookhaven National Laboratory Particle Collider

Figure: Brookhaven particle collider. Image from [9].

Project Methods: Resources

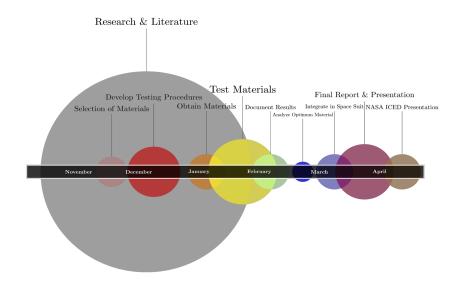
Figure: Brookhaven particle collider. Image from [9].

Project Methods: Testing Needs & Desires

Table: List of material / facility needs and desires.

Needs	Desires
BNNT	BNNT with H_2
Polyethylene	Spacesuit
Aerogel multifoil	Demron suit
WSU Medical	Brookhaven
Imaging Lab	National Lab

Project Considerations: Constraints


Constraints:

- ► Mass
- \blacktriangleright Costs \$10,000 per lb to put object into space

 $\underline{\text{Costs:}}$

- \blacktriangleright BNNT 2.5 mil/kg
- ► Aerogel Multifoil \$417/kg
- Polyethylene \$18/kg
- \blacktriangleright Demron[©] \$300/kg

Acknowledgements

Work Supported by:

- i. Boeing $^{\textcircled{C}}$
- ii. National Aeronautics and Space Administration (NASA)
- iii. Wright State Biomedical and Human Factors Engineering Dept.
- iv. Wright State Research Institute (WSRI)
- v. Siemens[©]

Special Thanks to:

- i. Charles Camarda, Ph.D., Astronaut
- ii. Amy Doll, Ph.D.

References I

- Cucinotta, F. A., Shavers, M. R., et al., Radiation Protection Studies of International Space State Extravehicular Space Suits. NASA, Johnson Space Center, Houston, TX, 2003.
- [2] Elmahroug, Y., Tellili, B., Souga, C., Calculation of Gamma and Neutron Shielding Parameters for Some Materials Polyethylene-Based. Int J Phys & Res., (3) 1, pp. 33–40, Mar 2013.
- [3] Friendman, H. W., Singh, M. S., Radiation Transmission Measurement for Demron Fabric. Lawrence Livermore National Lab, Livermore, CA, 2003.

NASA

References II

[4] Hubbell, J. H.,

Photon Cross Sections, Attenuation Coefficients and Energy Absorption Coefficients from 10 keV to 100 GeV.

Center for Radiation Research, (29), National Bureau of Standards, Washington, D.C., 1969.

[5] Rask, J., Vercouture, W., et al., Space Faring: The Radiation Challenge. NASA, Huntsville, AL.

 [6] Swordy, S., The Energy Spectra and Anisotropies of Cosmic Rays. Space Science Reviews, (99), pp. 85–94, 2001.

References III

- Tiano, A. L., Park, C., et al., Boron Nitride Nanotube: Synthesis & Application. NASA, Huntsville, AL.
- [8] BNNT, LLC. Newport News, VA. http://www.bnnt.com/products
- Brookhaven National Laboratory. Upton, NY. http://www.stonybrook.edu/commcms/bnl/

References IV

- [10] Health Physics and Radiation Protection. Georgetown University Health Physics Program http://healthphysics.georgetown.edu/HP_FAQ.html
- [11] Proctor Group Ltd.[©].
 Blairgowrie, UK.
 http://www.proctorgroup.com/products/spacetherm
- [12] Look for Diagnosis. Alicante, Spain. http://www.lookfordiagnosis.com/mesh_info.php?term =Polyethylene&lang=1

References V

[13] RST Radiation Shield Technology[©]. Coral Gables, FL. http://www.radshield.com

[14] Tate, K.,

How Radiation in Space Poses a Threat to Human Exploration. Purch, Ogden, UT. http://www.space.com/21353-space-radiation-mars-mission-threat.html

[15] Wolfram|Alpha LLC. Champaign, IL.,

http://www.wolframalpha.com