Veterinary Anesthetic and Analgesic Formulary 3rd Edition, Version G - I. Introduction and Use of the UC-Denver Veterinary Formulary - II. Anesthetic and Analgesic Considerations - III. Species Specific Veterinary Formulary - 1. Mouse - 2. Rat - 3. Neonatal Rodent - 4. Guinea Pig - 5. Chinchilla - 6. Gerbil - 7. Rabbit - 8. Dog - 9. Pig - 10. Sheep - 11. Non-Pharmaceutical Grade Anesthetics #### IV. References ### I. Introduction and Use of the UC-Denver Formulary #### **Basic Definitions:** - Anesthesia: central nervous system depression that provides amnesia, unconsciousness and immobility in response to a painful stimulation. Drugs that produce anesthesia may or may not provide analgesia (1, 2). - Analgesia: The absence of pain in response to stimulation that would normally be painful. An analgesic drug can provide analgesia by acting at the level of the central nervous system or at the site of inflammation to diminish or block pain signals (1, 2). - Sedation: A state of mental calmness, decreased response to environmental stimuli, and muscle relaxation. This state is characterized by suppression of spontaneous movement with maintenance of spinal reflexes (1). Animal anesthesia and analgesia are crucial components of an animal use protocol. This document is provided to aid in the design of an anesthetic and analgesic plan to prevent animal pain whenever possible. However, this document should not be perceived to replace consultation with the university's veterinary staff. As required by law, the veterinary staff should be consulted to assist in the planning of procedures where anesthetics and analgesics will be used to avoid or minimize discomfort, distress and pain in animals (3, 4). Prior to administration, all use of anesthetics and analgesic are to be approved by the Institutional Animal Care and Use Committee (IACUC). For each species listed in the formulary, the most commonly used anesthetic and analgesic drugs used on this campus are highlighted. These drugs can be considered the "front-line" of care. However, based on the research, procedure, and need, the most common drugs may not suffice and an individual drug or a combination of drugs may be indicated to provide the most safe and effective anesthetic and analgesic plan. Dosages or dose-ranges are obtained from a variety of laboratory animal medicine and veterinary references which fail to precisely agree. Where dosage ranges are provided, the effective minimum and safely administered maximum are represented. Selection of dose can be based on veterinary recommendation, literature references, or procedural experience. Yet, when listing these drugs in an animal use protocol, drugs should be listed with approximate dose ranges. This provides flexibility for titration up or down for the individual animal or for the particular application. For anesthetic drugs, the duration of action has not been provided. Duration of anesthesia is influenced by the drugs used, strain, age, sex, body weight, procedure performed and the amount of stimulus during the procedure. As a result, any published duration of action would be a generalization. For assistance in judging duration of action, consultation with a veterinarian is ideal when developing an anesthetic regimen. Due to all the factors that influence duration of anesthesia, anesthetic drugs should always be titrated to effect. If anesthesia is being maintained by a gas anesthetic (eg. Isoflurane) titration of anesthetic depth can be controlled almost immediately by adjusting the amount of anesthetic gas being administered to the animal. In addition, anesthetic duration can be extended for as long as the anesthetic gas is administered. In contrast, injectable anesthetics do not have this flexibility such that once a dose has been administered, it cannot be "removed" to end anesthesia to coincide with the end of the procedure. However, reversal drugs do exist for some of the drugs used in anesthetic combinations such as Medetomidine, which is efficiently reversed by Atipamezole (see α₂ antagonists below). In addition, injectable anesthetics may need to be re-administered so the anesthetic can initiate anesthesia if not achieved after the initial dose or accommodate the duration of the procedure. As a generalization, it is often recommended to re-administer 25-30% of the initial dose of the injectable anesthetic to lengthen the surgical anesthesia time. It is not acceptable to perform a surgical procedure unless the animal is fully anesthetized. Thus, when laboratory experience with injectable anesthetics finds that the recommended dose ranges are consistently too high (prolonged anesthesia or long recovery) or too low (return of reflex requiring repeated administration of drugs) for the procedure, the veterinary staff should be contacted. With veterinary consultation, further flexibility can be provided to more accurately titrate dosages prior to submitting a protocol modification to the Institutional Animal Care and Use Committee. Independent of the method of anesthesia or duration of the procedure, animals should be monitored until awake, also referred to as "Recovered." Recovery from anesthesia is indicated by the ability to right themselves when laid on their side, maintain a sternal body position, and demonstrate spontaneous movement in response to environmental stimulation such as cage manipulation. Monitoring recovery allows for confirmation that animals will have negligible risk of harm from cage mates and be able/capable to reach water after-hours. In addition, without monitoring the duration of recovery, anesthetic dose cannot be titrated to effect which may result in prolonged anesthesia and recovery for a relatively brief procedure. As a result, plans for intra- and post-operative monitoring must be included in the IACUC protocol, and then practiced as written. For **analgesic drugs**, doses and frequencies of administration are more difficult to gauge even with close clinical observation for discomfort. As a result, administration frequencies for analgesics are provided as strict guidelines supported by pain research in laboratory animal species or the standard of care in veterinary medicine. If an alternative regimen is desired, consultation with a veterinarian is required. A prime example of the importance of considering administration frequencies in analgesic use is the consideration for overnight pain management. Most of the opioid analgesics (Buprenorphine, Fentanyl, Butorphenol, Oxymorphone, etc.) administered at 5:00 PM will not be effective at 8:00 AM the next morning. Thus, administration after typical business hours, use of extended release formulations, and/or trans-dermal patch can be considered depending on the species. Current longer-lasting non-steroidal anti-inflammatory analgesics (NSAIDs) [Meloxicam, Carprofen, Flunixin, Ketoprofen, etc.] analgesics have longer durations of action than opioids, and can be administered in conjunction with opioids to increase potency of effect and duration of action. Independent of the analgesic drug(s) selected, the ideal administration regimen of analgesia includes pre-emptive (i.e. pre-surgical, pre-procedural) analgesic administration. This allows the analgesic to take effect prior to anesthesia so that the beneficial analgesic effects are experienced as the anesthesia is wearing off. This method of pre-emptive administration effectively prevents sensitization of pain sensory mechanisms which will prevent the "ramp-up" of pain sensation. Once ramp-up occurs, the threshold of pain stimulus is lowered thus requiring higher doses of analgesic for longer duration to control pain and discomfort as compared to an animal where analgesics were provided before the procedure. Prior administration can effectively be achieved by administering the analgesic regimen at least 30 min to 4 hrs prior to the potentially painful portion of the procedure. In rodent species, historically, the use of analgesics such as Acetaminophen (Children's Tylenol® Elixir) and Ibuprofen (Children's Advil® Elixir) have been administered in the drinking water for post-surgical procedures. This was performed based on the assumption that continuous administration of drug by consumption in the water would provide a hands-off, stress-free, continuously-administered level of analgesic therapy. With continued investigation, it has been demonstrated that water and food consumption post-surgically and/or post-anesthesia are neither constant nor consistent (5-8). As a result, analgesics may not be consumed by the patient. "Confirmed administration" is encouraged by routes such as injection or oral/gastric gavage to insure that the patient receives the appropriate dose of medication to better manage discomfort. Independent of the quality of design and integration of an anesthetic and analgesic plan into a research protocol, that plan is only as good as the skill and care with which it is applied. Training is available from the veterinary staff of the Office of Laboratory Animal Resources through routinely scheduled classes or by request for all personnel that work with laboratory animals. ### **II. Drug Considerations** ### Inhalant agents: Isoflurane (Forane®, Iso, IsoFlo®) Isoflurane is the first choice of anesthetic used for animal restraint or surgical procedures in laboratory animal species. Isoflurane is delivered via a nose-cone and inhaled in rodents or provided through an intratracheal tube in larger species. The concentration of drug can be administered to effect by adjusting the percent of displacement of O_2 with a precision vaporizer and compressed O_2 . Maintenance anesthesia is typically between 1.5-3% Isoflurane. Induction of anesthesia with gas is typically achieved with < 2 min exposure to 3-5% Isoflurane. Advantages: Rapid induction and recovery. A precision vaporizer provides the ability to precisely titrate the level of anesthesia during a procedure. Liquid
Isoflurane is not a DEA controlled drug. Disadvantages: Upfront cost associated with a precision vaporizer; requires either passive or active scavenging of waste and exhaled anesthetic gas; occupational health exposure to anesthetic gas should be limited; prolonged analgesic effect is not achieved after the animal is awake; depressed respiratory rate and decreased blood pressure. Additional Notes: Advantages typically outweigh disadvantages as gas anesthesia is the first recommendation for anesthetic administration due to rapid induction, recovery, and precise dose titration during the procedure. In addition, the duration of anesthesia can be easily adjusted for a variety of procedures ranging from 30 seconds up to many hours. To overcome cost and logistics, the CCM provides and maintains precision vaporizers with accompanying compressed O₂ for use while within the animal facilities. Concurrent use of analgesics such as opioids or NSAIDs is encouraged as Isoflurane has no analgesic properties once the animal is awake from the procedure. Occupational exposure is always a concern. Gas anesthesia must be vented from the room (table-top back-draft vents, biosafety cabinet [BSC] with 100% exhaust outside the building) or filtered through passive scavenging using F/Air® activated charcoal canisters. F/Air® canisters must be weighed on a very regular basis and replaced before the canister gains 50 grams of weight during use. #### Cyclohexamines: Ketamine (Ketoset®), Tiletamine Ketamine is the most commonly used injectable anesthetic used in a variety of species. However, Ketamine used as the sole anesthetic is not recommended. In most cases, Ketamine is used in combination with other injectable agents such as α_2 agonists or benzodiazepines to reduce or eliminate many of the less desirable side effects if used alone. In rodents, Ketamine combined with Xylazine or Xylazine plus Acepromazine are the preferred anesthetics when gas anesthesia cannot be used. Advantages: Ketamine has a wide margin of safety in most species; residual analgesic effect following anesthetic recovery, most commonly used drug (in combination) for injectable anesthesia in rodents. Disadvantages: Ketamine alone does not provide muscle relaxation and muscle spasms may be observed; DEA license required for use as Ketamine is a Class III controlled substance; surgical anesthesia may be limited depending on the species; prolonged recovery as compared to gas anesthetics (true for any injectable anesthesia) Additional details about Ketamine combinations: - **A) Ketamine + Xylazine:** Both drugs can be mixed in a single syringe prior to administration. This combination is the most common injectable anesthetic used in rodent species. - **B)** Ketamine + Xylazine + Acepromazine: All three drugs can be mixed in a single syringe prior to administration. In rodents, the addition of Acepromazine to the Ketamine/Xylazine cocktail increases the depth of anesthesia and substantially prolongs the duration of anesthesia as well as recovery time (9). The benefit of this combination will be dependent on the procedure. - **C) Ketamine + Diazepam:** Both drugs can be mixed in a single syringe prior to administration. Advantages include limited cardiovascular effects including minimal hypotension as compared to Ketamine/Xylazine combinations. However, in rodents, Ketamine/Diazepam only provides light anesthesia so it may only be appropriate for chemical restraint. As a result, this is a relatively infrequently used anesthetic option in rodents. However, this combination provides rapid induction of anesthesia in cats with favorable duration. - **D)** Tiletamine + Zolazepam (Telazol®): Tiletamine is a similar drug as Ketamine and is available already formulated with Zolazepam under the trade name Telazol®. In combination, Telazol® is very similar to the anesthetic combination of Ketamine and Diazepam. Primarily used in larger species such as cats and pigs. The primary advantage is that a smaller injection volume is needed to induce sedation/anesthesia. However, this drug combination is not considered safe for use in rabbits. Once Telazol® has been reconstituted, discard after 4 days if stored at room temperature or after 14 days if stored refrigerated. Alpha-2 Agonists: Medetomidine (Domitor®), Dexmedetomidine (Dexdomitor®), Xylazine (Rompun®) Alpha-2 agonists are used for their sedative and analgesic properties in a variety of species. Used as the sole agent, they do not produce an adequate level of anesthesia for even minor surgical procedures. However, in combination with Ketamine, α_2 -agonists become much more useful and effective as anesthetics for surgical procedures. Advantages: Produces analgesia of short duration; can be combined with Ketamine to produce adequate surgical anesthesia in many species; effects can be reversed with a subcutaneous α_2 antagonists injection such as Atipamezole; not a DEA controlled drug; not irritating when administered IM or IP. Disadvantages: Cardiovascular depression (decreased heart rate, cardiac output, and hypotension); transient hyperglycemia following administration which may have research significance; causes vomiting in cats. Additional Notes: If following the first injection of anesthetic, the animal does not achieve the desired level of anesthesia, it is generally recommended to re-dose with 25-30% of the initial dose of both Ketamine and Xylazine. When re-dosing an injectable anesthetic combination of Ketamine and an α_2 agonists as the initial injection is wearing off, it is recommended to only re-dose Ketamine as the duration of action of the α_2 agonist is much longer than the duration of effect of Ketamine. Medetomidine vs. Dexmedetomidine: Medetomidine (Domitor®) contains two isomers of the compound, one active and one inactive. Dexmedetomidine (Dexdomitor®) is the second generation formulation and contains only the active isomer of the drug. Thus, list dosages for Medetomidine should be divided in half when using Dexmedetomidine. #### Alpha-2 Antagonists: Atipamezole (Antisedan®), Yohimbine Alpha-2 antagonists are used as reversal agents for α_2 agonists. Administration at the end of a procedure where the anesthetic combination included Xylazine or Medetomidine, an α_2 antagonist will aid in reducing anesthesia time and prompting anesthetic recovery. Atipamezole is 200 - 300x more selective for the α_2 receptor than Yohimbine. Thus, as a reversal agent, Atipamezole will provide a more rapid displacement of the α_2 agonist, providing a more rapid reversal than Yohimbine. Advantages: Can reduce duration of sedation and anesthesia caused by α_2 agonist. Disadvantage: Reverses any analgesic benefit of α_2 agonist; can cause muscle tremors, increased respiratory rate, and hyperemic mucous membranes; has no use as a stand-alone drug. Additional Notes: Reversal is not required when using an α_2 -agonist in an anesthetic combination but can be utilized in situations to reduce prolonged recovery times. Atipamezole (α_2 antagonist), was developed in conjunction with Medetomidine (α_2 agonist) so that 5 mg of Atipamezole is used to reverse 1 mg of Medetomidine (10). Due to the high specificity of Atipamezole for the α_2 receptor as compared to Xylazine, only 1 mg of Atipamezole is administered to reverse every 10 mg of Xylazine administered (11). Yohimbine is also an α_2 antagonist and can be used to reverse Xylazine at a standard dose of 0.2 mg/kg, independent of the Xylazine dose administered. While both are reversal agents for α_2 agonists, the onset of reversal of Yohimbine is much longer than that of Atipamezole due to differences in selectivity of the α_2 receptor between the two drugs. See table of antagonist reverse on next page. | Alpha 2 Agonist Reversal (Xylazine and Medetomidine) | | | | | |--|--|----------|--|--| | Atipamezole (Medetomidine Reversal) 5 mg for every 1 mg of Medetomidine, IM, SC Reversal | | | | | | Atipamezole (Xylazine Reversal) | 1 mg for every 10 mg of Xylazine, IM, SC | Reversal | | | | Yohimbine (Xylazine Reversal) | 0.2 mg/kg, IM SC | Reversal | | | ### Benzodiazepines: Diazepam (Valium®), Midazolam, Zolazepam This class of drug can provide marked sedation in a variety of species; however, there is no analgesic effect. Used alone, these drugs will not provide a true anesthetic state as awareness persists with relaxation even at high dosages. As a result, these drugs are primarily used as sedative, pre-anesthetics and the induction of anesthesia but are never used alone to provide or maintain anesthesia. Additional Notes: Benzodiazepines are DEA Class IV controlled substances. Midazolam is favored over Diazepam because pharmaceutical grade preparations of Diazepam are formulated in a non-water soluble compounds that should only be administered intravenously. Midazolam is water-soluble and is provided in preparations where intramuscular injections are acceptable. ### Barbiturates: Sodium Pentobarbital (Nembutal®), Methohexital, Thiopental Barbiturates function as GABA_A agonists and are considered to be good anesthetic agents but provide unreliable sedation at low dosages and inadequate analgesic effect at any dose. Pentobarbital, the most commonly used drug of this class, is considered a long acting anesthetic. Methohexital and Thiopental are considered short and ultra-short acting anesthetics and were more commonly used as induction agents in large animal species. Advantages: Rapid anesthetic onset; provides a prolonged duration of surgical anesthesia; decades of use has characterized many research side effects; Pentobarbital is the active drug in manufactured euthanasia solutions (Euthasol®, Fatal-Plus®). Disadvantages: Prolonged
recovery time; inadequate analgesic properties; extremely expensive; narrow margin of safety; produces respiratory depression at higher dosages; non-rodent species may experience a distressful anesthetic recovery; DEA License required for use as a Class II controlled substance. Additional Notes: Sodium pentobarbital is the primary active ingredient in Fatal Plus®, Sleepaway®, and Euthasol® which are manufactured euthanasia solutions. In addition to pentobarbital, the euthanasia solution Euthasol® also contains the active ingredient phenytoin sodium, which is an antiepileptic drug which suppresses brain activity. All three products contain non-active ingredients include preservatives and coloring. The preservatives (benzyl alcohol, isopropyl or ethyl alcohol) are bacterial static, preventing bacterial growth. The added coloring (blue or pink) aid in identifying the solution while in the syringe, preventing confusion and inadvertent euthanasia of animals. Pentobarbital administration at euthanasia dosages (2-3x anesthetic dose) initiates a rapid and deep anesthesia causing a dramatic decrease in blood pressure and blocking the respiratory centers in the brain stopping respiration, followed by halting of cardiac function. While pentobarbital sodium is the active ingredient in these solutions, the intent of these solutions is euthanasia only. These solutions are not to be diluted to provide deep anesthesia for recovery procedures or prolonged anesthesia for terminal procedures. They can be used at lower dosages if the procedure that is being performed is "seamlessly" leading to death such as in transcardial perfusion with fixation solution or tissue harvest (12). No unintended consequences have been reported on research results with the use of euthanasia solutions for euthanasia of research rodents or larger species. Due to the combination of drugs within euthanasia solutions they are considered DEA Class III controlled substance where sodium pentobarbital alone is a DEA Class II controlled drug. # Opioids: Buprenorphine (Buprenex®), Oxymorphone, Fentanyl, Morphine, Butorphanol Opioid drugs produce their effect by binding three different receptors [mu (μ), kappa (κ), and delta (δ)] as either agonists, partial agonists or antagonists. The location of these receptors vary, but in general, reside within the brain and spinal cord. Advantages: Provide potent analgesia; concurrent administration can lower the dose of inhalant or barbiturate general anesthetic for surgery; mechanism mediated by receptor binding in the brain and spinal cord; long history of use in research; reversible with Naloxone. Disadvantages: DEA Controlled Class II-IV drugs; high potential for human abuse and addiction; relatively short duration of action; repeated use may result in tolerance development. Additional Notes: Duration of effect has continuously hampered the use of opioids in research animals. In general, opioids are short acting drugs. The longest duration of effect by an injectable administration route is Buprenorphine which can provide analgesia for up to 12 hrs in some species. Transdermal patches have also been developed to provide longer duration of action up to approximately 3 days. However, these patches are physically limited to use in species larger than rabbits due to the size of the patches. Most recently, liposomal encapsulated opioids have been developed which are showing promise in providing multiple days duration of analgesia with one injection (Buprenorphine SR) (13). ## Non-steroidal Anti-Inflammatory Drugs (NSAIDs): Carprofen (Rimadyl®), Meloxicam (Metacam®), Flunixin meglumine (Banamine®), Ketoprofen (Ketofen®), Ibuprofen (Advil®), Acetaminophen (Tylenol®) Members of this group represent 13 different classes of drugs which share inhibitory activity of the cyclooxygenase (COX) enzyme. The COX enzyme facilitates the production of Prostoglandin G₂ (PGG₂) which then follows a variety of enzymatic processes in the production of several compounds that are involved in normal physiological processes and production of Prostoglandin E₂ (PGE₂). PGE₂ specifically plays a role in the perception of pain in the periphery and within the central nervous system. Thus, blockade of PGE₂ by COX inhibition is effective in control of discomfort at the site of insult and within the central nervous system. Two forms of the COX enzyme have been well characterized (COX-1 and COX-2). As a result, COX inhibitors are often referenced as non-selective COX inhibitors or selective COX-2 inhibitors. This distinction has been made because inhibition of COX-2 is believed to be the predominant method of NSAID function to provide analgesia and anti-inflammatory action even though this "consensus" is still under debate. Over the past 10 years, several NSAIDs have emerged for veterinary use that are COX-2 selective, such as Carprofen and Meloxicam which can be administered once every 12-24 hours in most species. Advantages: Newer drugs (Carprofen, Meloxicam) include a long duration of analgesic activity; newer drugs demonstrate analgesic quality that rivals some opioids; not a DEA controlled substance; there are multi-route administration methods for several NSAIDs; relative safety when administered at prescribed dosages. Disadvantages: Contraindicated for inflammation models, infectious disease, or coagulation research due to anti-inflammatory properties; COX-1 side effects such as: gastrointestinal complications, prolonged coagulation times, and changes in kidney function with non-COX-2 selective forms. Additional Notes: Analgesic combinations that include NSAIDs *plus* opioids would be considered an ideal combination for the control and prevention of discomfort due to the demonstrated harmony and difference in mechanism of action. In contrast, it is discouraged to combine multiple NSAIDs in combination or use NSAIDs in combination with steroids (Prednisone, Prednisolone, and Dexamethasone) as the incidence of complications increase. Oral dosing of analgesics following anesthesia results in questionable consumption of the drug due to decreased water consumption following anesthesia, as demonstrated in rodents. NSAID Dilution for Small Mammals: Personal communication with Pfizer Animal Health indicates that dilution of Carprofen (Rimadyl®) with sterile water has been reported in veterinary medicine for product dilution. However, the company cannot provide stability or other product details once diluted from the original concentration. It is the position of the UC Denver Veterinary Staff that sterile saline diluted Carprofen is appropriate and once diluted should be stored refrigerated and disposed of after 7 days. Example of Carprofen Dilution: Dilutions of Carprofen can be made in a 3-5 mL sterile Red-Top Vacutainer blood sample tube. Manufacturer stock concentration of small animal Carprofen is 50 mg/mL. The dose for rodents is typically 5 mg/kg. For mice, it is assumed that most will weigh approximately 25-30 grams. This can vary significantly between strains and with age. Dilute 0.1 mL of the manufacturer stock Carprofen (50 mg/mL) into 3.9 mL of sterile saline (0.9% NaCl). This will give you a diluted stock concentration of 1.25 mg/mL so that you would give approximately 0.1 mL per 25 g of body weight of each mouse. ### Local Anesthetics: Lidocaine, Bupivacaine (Marcaine®), Ropivacaine (Naropin®), Proparacaine (Alcaine® Ophthalmic) Local anesthetics block nerve impulses by specifically binding the voltage-gated Na⁺ channel in the nerve cell membrane. Reversible drug binding stabilizes the ion channel preventing the transmission of action potentials, thus preventing nerve information transmission to the spine and brain. Local anesthetic routes of administration include topical to mucus membranes (nose, eye, etc.) or injected directly into tissues and around nerve bundles. Administration of local anesthetics prior to the painful stimulus (eg. incision) would be considered an adjunct analgesic to opioid and NSAID analgesics. Use as the primary analgesic is discouraged due to the short duration of effect (hours). Advantages: Pre-operative and intra-operative administration can provide a good adjunct in pain relief to general anesthesia and systemic analgesics administered after a procedure. Drugs of this class are not controlled substances. Disadvantages: Avoid administering by intramuscular and intravenous injections as both routes reach systemic circulation very rapidly. Signs of overdose or systemic toxicity include seizures and death. Dilution of stock concentration is encouraged to provide more accurate dose administration. Additional Notes: For rodent use, dilute 1-2% Lidocaine to 0.5%, and 0.5% Bupivacaine to 0.25%, to allow for more accurate dosing and realistic volume to infuse at the incision site. [Note: 1% solution is equal to 10 mg/mL]. Ropivacaine requires no dilution prior to use. Lidocaine is a fast acting, short duration local anesthetics. Bupivacaine is a slow onset, long acting local anesthetic. When used in combination (Lidocaine plus Bupivacaine in the same syringe) the benefits of both drugs can be achieved, namely rapid onset with long duration of local anesthesia. In addition, the duration of efficacy of local anesthetics can be extended by the addition of epinephrine to the injected solution. Epinephrine causes local vasoconstriction of blood vessels in the area of the injection resulting in decreased systemic absorption leading to prolonged duration of action. Preparations of Lidocaine and Bupivacaine can be purchased pre-combined with epinephrine (1:200,000). ### Mouse Anesthetics and Analgesics Modified 2-6-2012 | Inhaled Anesthetic Dru | gs | | | |------------------------|--|----------------------|---| | Agent | Dosage | Route | Comments (Ref.) | |
Isoflurane | Induction: 3-5%
Maintenance: 1.5-3% | Inhaled
Nose Cone | Administer via precision vaporizer & compressed O ₂ . Open-drop method with IACUC approval (14, 15). | | Injectable Sedation Drugs/Combinations | | | | |--|--------------------|----------|-----------------| | Agent(s) | Dosage | Use | Comments (Ref.) | | Fentanyl | 0.8 mg/kg, IP | Sedation | (16) | | Ketamine Medetomidine | 50 0.5 mg/kg, IP | Sedation | (17) | | Ketamine Xylazine | 50 10 mg/kg, IP | Sedation | (18) | | Injectable Anesthetic Drugs/Combinations | | | | |--|------------------------------|------------|-----------------| | Agent(s) | Dosage | Use | Comments (Ref.) | | Ketamine Xylazine | 80-100 7.5-16 mg/kg, IP IM | Anesthesia | (1) | | Ketamine Xylazine Acepromazine | 100 2.5 2.5 mg/kg, IP IM | Anesthesia | (1, 9) | | Ketamine Medetomidine | 75 1.0 mg/kg, SQ IP | Anesthesia | (19) | | Pentobarbital Pentobarbital | 50-90 mg/kg, IP | Anesthesia | (1, 20) | | Propofol | 12-26 mg/kg, IV | Anesthesia | (1) | | Telazol [®] | 7.5-45 mg/kg, IP IM | Anesthesia | (20) | | Local Anesthetics | | | | |------------------------------|-----------------------------|-------------|--| | Agent | Dosage | Use | Comments (Ref.) | | Lidocaine (1-2%) | 2-4 mg/kg (max 7 mg/kg), SQ | Local Block | Onset 5-10 min, Duration 0.5-1 hr (21) | | Bupivacaine (0.5% Marcaine®) | 1-2 mg/kg (max 8 mg/kg), SQ | Local Block | Onset 15-30 min, Duration 4-8 hrs (21, 22) | | Ropivacaine (0.2% Naropin®) | 1-2 mg/kg (max 8 mg/kg), SQ | Local Block | Onset 15-30 min, Duration 4-8 hrs (21) | | Agent | Dosage | Use | Comments (Ref.) | |-------------------------------------|--|----------|-----------------| | Yohimbine (Xylazine Reversal) | 0.2 mg/kg, IM SC | Reversal | (23) | | Atipamezole (Medetomidine Reversal) | 5 mg for every 1 mg of
Medetomidine, IM, SC | Reversal | (19, 23) | | Atipamezole (Xylazine Reversal) | 1 mg for every 10 mg of Xylazine IM, SC | Reversal | (11, 23) | | Analgesics (Pain Relief) | | | | | |--|------------------------------|-----|-------------------------|--| | Opioid | Dosage | DEA | Dosing Frequency (Ref.) | | | Buprenorphine (Buprenex®) | 0.01-0.2 mg/kg, SC IP | Yes | 6-12 hrs (1, 23-25) | | | Oxymorphone | 0.2-0.5 mg/kg, SC IP | Yes | 4-6 hrs (23) | | | Fentanyl | 0.05 mg/kg, IP | Yes | 4-6 hrs (1) | | | NSAID Anti-Inflammatory Drug | | | | | | Carprofen (Rimadyl [®]) | 5 mg/kg, SC IP | No | 24 hrs (1, 24) | | | Meloxicam (Metacam®) | 1-2 mg/kg, SC IP | No | 24 hrs (24) | | | Flunixin (Banamine®) | 1-2.5 mg/kg, SC | No | 12-24 hrs (1, 24) | | | Ketoprofen (Ketofen®) | 5 mg/kg, SC | No | 12-24 hrs (1, 24) | | | NSAID (Water Dosing) | | | | | | Ibuprofen (Children's Advil® Elixir)* | 40 mg/kg or 0.2 mg/mL, PO | No | Continuously (5, 24) | | | Acetaminophen (Tylenol® Elixir)* | 300 mg/kg or 2-4.5 mg/mL, PO | No | Continuously (20, 24) | | | * Not appropriate as the only post-surgical analysis to be administered due to reduction in water intake 24-48 hrs | | | | | * Not appropriate as the only post-surgical analgesic to be administered due to reduction in water intake 24-48 hrs following surgery (5-8). ### Rat Anesthetics and Analgesics Modified 2-6-2012 | Inhaled Anesthetic Dru | gs | | | |------------------------|--|----------------------|---| | Agent | Dosage | Route | Comments (Ref.) | | Isoflurane | Induction: 3-5%
Maintenance: 1.5-3% | Inhaled
Nose Cone | Administer via precision vaporizer & compressed O ₂ . Open-drop method with IACUC approval (14, 15). | | Injectable Anesthetic Drugs/Combinations | | | | |--|---------------------------|------------|-----------------| | Agent(s) | Dosage | Use | Comments (Ref.) | | Ketamine Xylazine | 40-80 5-10 mg/kg, IP IM | Anesthesia | (1, 24) | | Ketamine Medetomidine | 60-90 0.5 mg/kg, IP | Anesthesia | (1, 24, 26) | | Pentobarbital | 30-60 mg/kg, IP | Anesthesia | (1, 24) | | Propofol | 10 mg/kg, IV | Anesthesia | (1, 23) | | Telazol [®] | 50-80 mg/kg, IP | Anesthesia | (23) | | Local Anesthetics | | | | |------------------------------|-----------------------------|-------------|--| | Agent | Dosage | Use | Comments (Ref.) | | Lidocaine (1-2%) | 2-4 mg/kg (max 7mg/kg), SQ | Local Block | Onset 5-10 min, Duration 0.5-1 hr (21) | | Bupivacaine (0.5% Marcaine®) | 1-2 mg/kg (max 8 mg/kg), SQ | Local Block | Onset 15-30 min, Duration 4-8 hrs (21, 22) | | Ropivacaine (0.2% Naropin®) | 1-2 mg/kg (max 8 mg/kg), SQ | Local Block | Onset 15-30 min, Duration 4-8 hrs (21) | | Alpha 2 Agonist Reversal (Xylazine and Medetomidine) | | | | |--|--|----------|-----------------| | Agent | Dosage | Use | Comments (Ref.) | | Yohimbine (Xylazine Reversal) | 0.2 mg/kg, IM SC | Reversal | (23) | | Atipamezole (Medetomidine Reversal) | 5 mg for every 1 mg of
Medetomidine, IM, SC | Reversal | (23) | | Atipamezole (Xylazine Reversal) | 1 mg for every 10 mg of Xylazine IM, SC | Reversal | (11, 23) | | Analgesics (Pain Relief) | | | | |--|------------------------------|-----|--------------------------| | Opioid | Dosage | DEA | Dosing Frequency (Ref.) | | Buprenorphine (Buprenex®) | 0.01-0.2 mg/kg, SC IP IV | Yes | 6-12 hrs (1, 23-25, 27) | | Buprenorphine SR | 1.2 mg/kg | Yes | 72 hrs (13) | | Oxymorphone | 0.2-0.5 mg/kg, SC IM | Yes | 4-6 hrs (23) | | Fentanyl | 0.05 mg/kg, IP IM | Yes | 4-6 hrs (1) | | NSAID Anti-Inflammatory Agent | | | | | Carprofen (Rimadyl®) | 5 mg/kg, SC IP | No | 24 hrs (1, 24) | | Meloxicam (Metacam®) | 1-2 mg/kg, PO SC | No | 24 hrs (24) | | Flunixin (Banamine®) | 1.1-2.5 mg/kg, SC | No | 12-24 hrs (1, 24) | | Ketoprofen (Ketofen®) | 5 mg/kg, SC | No | 12-24 hrs (24) | | NSAID (Water Dosing) | | | | | Ibuprofen (Children's Advil® Elixir)* | 40 mg/kg or 0.2 mg/mL, PO | No | Continuously (5, 24) | | Acetaminophen (Tylenol® Elixir)* | 300 mg/kg or 2-4.5 mg/mL, PO | No | Continuously (1, 20, 24) | | * Not appropriate as the only post-surgical analgesic to be administered due to the anticipated decreased water intake | | | | | 24-48 hrs following surgery. | | | | ### **Neonatal Rodent Anesthetics and Analgesics** Modified 3-8-2012 | Inhaled Anesthetic Dru | gs | | | |------------------------|--|----------------------|---| | Agent | Dosage | Route | Comments (Ref.) | | Isoflurane | Induction: 3-5%
Maintenance: 1.5-3% | Inhaled
Nose Cone | Administer via precision vaporizer and compressed O ₂ . (1) Open-drop method with IACUC approval (14, 15). | #### Hypothermia Hypothermia Method: Mouse and rats pups up to 6 days of age may be anesthetized by hypothermia when inhalant anesthetic is not feasible. - Hypothermia induction: Place the pup in a latex/nitrile glove finger and immerse the glove finger in crushed ice and water (2-3°C or 35-37°F) up to the level of the head so that the head of the pup is visible. Anesthesia induction takes 5-8 minutes. - Procedure: Remove the pup from the ice bath and place on a re-freezable ice pack. A piece of gauze or cloth should prevent direct contact of the pup's skin with the freezable ice pack. Duration of anesthesia on an ice pack is 15 minutes maximum. - Hypothermia Recovery: Rapid warming should be avoided. Pups can be placed in a small incubator (32-35 °C or 90-95°F) for gradual warming over 20-30 minutes. Once warmed for this time, circulating warm water blankets can be used until mobile where complete recovery takes 30-60 minutes. Once mobile, pups may be mingled with the litter to aid in covering the procedure smells on the pup then the litter returned to the dam. Comments (Ref.): (1, 28-33) | Injectable Anesthetic Drugs/Combinations | | | | | |--|------------------------|------------|-----------------|--| | Agent(s) | Dosage | Use | Comments (Ref.) | | | Ketamine Xylazine | 40-80 5-10 mg/kg, IP | Anesthesia | (32) | | | Pentobarbital | 30-40 mg/kg, IP | Anesthesia | (29) | | **Comments:** Injectable anesthetics in neonatal rodents is unpredictable and has a >50% rate of mortality (29). Use of injectable anesthetics should only be considered in neonates >6 days of age and where gas anesthesia is not feasible. | Analgesics (Pain Relief) | | | | | |---------------------------|-----------------------|-----|-------------------------|--| | Opioid | Dosage | DEA | Dosing Frequency (Ref.) | | | Morphine | 5-10 mg/kg, SC | Yes | 6 hrs (32) | | | Buprenorphine (Buprenex®) | 0.05-0.2 mg/kg, SC IP | Yes | 6-8 hrs (32) | | | Fentanyl | 0.05 mg/kg, IP | Yes | 4 hrs (34) | | ### Guinea Pigs Anesthetics and Analgesics Modified 2-6-2012 | Inhaled Anesthetic Drugs | | | | |--------------------------|---------------------|-----------|---| | Agent | Dosage | Route | Comments (Ref.) | | <mark>Isoflurane</mark> | Induction: 3-5% | Inhaled | Administer via precision | | | Maintenance: 1.5-3% | Nose Cone | vaporizer & compressed O ₂ . | | Injectable Sedation for Induction Drugs/Combinations | | | | | |--|------------------------------------|----------|----------------------------|--| | Agent | Dosage | Use | Comments (Ref.) | | | Acepromazine | 0.5-1.5 mg/kg IM
2.5-5
mg/kg IP | Sedation | (23, 24)
(1) | | | Ketamine | 20-120 mg/kg IM | Sedation | Wide safety margin (1, 24) | | | Injectable Anesthetics Combinations | | | | |-------------------------------------|--|------------|--------------------------------------| | Agent(s) | Dosage | Use | Comments (Ref.) | | Ketamine Acepromazine | 20-40 0.5 mg/kg, IM IP | Anesthesia | (23, 24) | | Ketamine Xylazine | 20-40 2 mg/kg, IM IP
87 13 mg/kg, IM IP | Anesthesia | Non-surgical (1, 24)
Surgical (1) | | Ketamine Medetomidine | 40 0.25-0.5 mg/kg, IM | Anesthesia | 20-30 min duration (24) | | Ketamine Diazepam | 20-40 2-3 mg/kg, IM IP | Anesthesia | (23, 24) | | Fentanyl Diazepam | 1.0 mg/kg, IM 5 mg/kg, IP | Anesthesia | Minor surgical event (1) | | Telazol [®] | 20-40 mg/kg, IM IP | Anesthesia | (23) | | Pentobarbital | 15-40 mg/kg, IP | Anesthesia | (20, 23, 24) | | Local Anesthetics | | | | | |--|---------------|-------------|--|--| | Agent | Dosage | Use | Comments (Ref.) | | | Lidocaine (1-2%) | 2-4 mg/kg, SQ | Local Block | Onset 5-10 min, Duration 0.5-1 hr (21) | | | Bupivacaine (0.5% Marcaine®) | 1-2 mg/kg, SQ | Local Block | Onset 15-30 min, Duration 4-8 hrs (21, 22) | | | Ropivacaine (0.2% Naropin [®]) | 1-2 mg/kg, SQ | Local Block | Onset 15-30 min, Duration 4-8 hrs (21) | | | Alpha 2 Agonist Reversal (Xylazine and Medetomidine) | | | | | |--|--|----------|-----------------|--| | Agent | Dosage | Use | Comments (Ref.) | | | Yohimbine (Xylazine Reversal) | 0.2 mg/kg, IM SC | Reversal | (24) | | | Atipamezole (Medetomidine Reversal) | 5 mg for every 1 mg of
Medetomidine, IM, SC | Reversal | (10) | | | Atipamezole (Xylazine Reversal) | 1 mg for every 10 mg of Xylazine IM, SC | Reversal | (11) | | | Analgesics (Pain Relief) | | | | | |--------------------------------------|-------------------------|-----|-------------------------|--| | Opioid | Dosage | DEA | Dosing Frequency (Ref.) | | | Oxymorphone | 0.2-0.5 mg/kg, SC IM IP | Yes | 6-12 hrs (23, 24) | | | Buprenorphine (Buprenex®) | 0.05 mg/kg, SC IM IP | Yes | 8-12 hrs (23, 24) | | | Butorphanol | 0.4-2 mg/kg, SC IM IP | Yes | 4-12 hrs (23, 24) | | | NSAID Anti-Inflammatory Drug | | | | | | Meloxicam (Metacam®) | 0.5 mg/kg, PO, SC | No | 24 hrs (1) | | | Carprofen (Rimadyl [®]) | 1-4 mg/kg, PO SC | No | 24 hrs (24) | | | Flunixin (Banamine®) | 2.5 mg/kg, IM | No | 12-24 hrs (23) | | | Ketoprofen (Ketofen®) | 1 mg/kg, SC IM | No | 12-24 hrs (24) | | | NSAID Agent (Water Dosing) | | | | | | Ibuprofen (Children's Advil® Elixir) | 10 mg/kg, PO in water | No | 4 hrs (24) | | ### Chinchilla Anesthetics and Analgesics Modified 2-6-2012 | Inhaled Anesthetic Drugs | | | | |--------------------------|---------------------|-----------|---| | Agent | Dosage | Route | Comments (Ref.) | | <mark>Isoflurane</mark> | Induction: 3-5% | Inhaled | Administer via precision | | | Maintenance: 1.5-3% | Nose Cone | vaporizer & compressed O ₂ . | | Injectable Sedation for Induction Drugs/Combinations | | | | | |--|------------------|----------|-----------------|--| | Agent | Dosage | Use | Comments (Ref.) | | | Acepromazine | 0.5-1.0 mg/kg IM | Sedation | (20, 24) | | | Ketamine | 20-40 mg/kg IM | Sedation | (24) | | | Injectable Anesthetics Combinations | | | | | |-------------------------------------|-----------------------------|------------|-----------------|--| | Agent(s) | Dosage | Use | Comments (Ref.) | | | Ketamine Acepromazine | 20-40 0.5 mg/kg, IM IP | Anesthesia | (23, 24) | | | Ketamine Xylazine | 35-40 4-8 mg/kg, IM IP | Anesthesia | (24) | | | | 40 2 mg/kg, IM | | (35) | | | Ketamine Medetomidine | 5 0.06 mg/kg IM | Anesthesia | (35) | | | Ketamine Diazepam | 20-40 2-3 mg/kg, IM IP | Anesthesia | (23, 24) | | | Midazolam Medetomidine | 1.0 0.05 0.02 mg/kg, IM | Anesthesia | (1) | | | Fentanyl | | | | | | Telazol [®] | 20-40 mg/kg, IM IP | Anesthesia | (23) | | | Pentobarbital | 35-40 mg/kg, IP | Anesthesia | (23, 24) | | | Local Anesthetics | | | | | |--|---------------|-------------|--|--| | Agent | Dosage | Use | Comments (Ref.) | | | Lidocaine (1-2%) | 2-4 mg/kg, SQ | Local Block | Onset 5-10 min, Duration 0.5-1 hr (21) | | | Bupivacaine (0.5% Marcaine®) | 1-2 mg/kg, SQ | Local Block | Onset 15-30 min, Duration 4-8 hrs (21, 22) | | | Ropivacaine (0.2% Naropin [®]) | 1-2 mg/kg, SQ | Local Block | Onset 15-30 min, Duration 4-8 hrs (21) | | | Alpha 2 Agonist Reversal (Xylazine and Medetomidine) | | | | | |--|--|----------|-----------------|--| | Agent | Dosage | Use | Comments (Ref.) | | | Yohimbine (Xylazine Reversal) | 0.2 mg/kg, IM SC | Reversal | (24) | | | Atipamezole (Medetomidine Reversal) | 5 mg for every 1 mg of
Medetomidine, IM, SC | Reversal | (10) | | | Atipamezole (Xylazine Reversal) | 1 mg for every 10 mg of Xylazine IM, SC | Reversal | (11) | | | Analgesics (Pain Relief) | | | | | |-----------------------------------|-------------------------|-----|-------------------------|--| | Opioid | Dosage | DEA | Dosing Frequency (Ref.) | | | Oxymorphone | 0.2-0.5 mg/kg, SC IM IP | Yes | 6-12 hrs (23, 24) | | | Buprenorphine (Buprenex®) | 0.05 mg/kg, SC IM IP | Yes | 8-12 hrs (23, 24) | | | Butorphanol | 0.2-2 mg/kg, SC IM IP | Yes | 4 hrs (23, 24) | | | NSAID Anti-Inflammatory Drug | | | | | | Meloxicam (Metacam®) | 1-2 mg/kg | No | 24 hrs No citation | | | Carprofen (Rimadyl [®]) | 4 mg/kg, PO SC | No | 24 hrs (24) | | | Flunixin (Banamine®) | 2.5 mg/kg, IM | No | 12-24 hrs (23) | | | Ketoprofen (Ketofen®) | 1 mg/kg, SC IM | No | 12-24 hrs (24) | | ### Gerbil Anesthetics and Analgesics Modified 9-21-2012 | Inhaled Anesthetic Drugs | | | | |--------------------------|---------------------|-----------|---| | Agent | Dosage | Route | Comments (Ref.) | | <mark>Isoflurane</mark> | Induction: 3-5% | Inhaled | Administer via precision | | | Maintenance: 1.5-3% | Nose Cone | vaporizer & compressed O ₂ . | | Injectable Sedation for Induction Drugs/Combinations | | | | | |--|--------------------|----------|-----------------|--| | Agent | Dosage | Use | Comments (Ref.) | | | Xylazine | 5-10 mg/kg, SC IM | Sedation | (23) | | | Medetomidine | 0.05-0.2 mg/kg, SC | Sedation | (24) | | | Diazepam | 3-5 mg/kg, SC IM | Sedation | (23) | | | Midazolam | 1-3 mg/kg, SC IM | Sedation | (23, 24) | | | Injectable Anesthetics Combinations | | | | |-------------------------------------|-----------------------------|------------|-----------------| | Agent(s) | Dosage | Use | Comments (Ref.) | | Ketamine Xylazine | 50-70 2-5 mg/kg, SC IM IP | Anesthesia | (23, 24) | | Ketamine Medetomidine | 75 0.25-0.5, SC IM IP | Anesthesia | (1) | | Telazol [®] | 50-80 mg/kg, IM IP | Anesthesia | (1, 23) | | Pentobarbital | 60 mg/kg, IP | Anesthesia | (23) | | Local Anesthetics | | | | | |--|---------------|-------------|--|--| | Agent | Dosage | Use | Comments (Ref.) | | | Lidocaine (1-2%) | 2-4 mg/kg, SQ | Local Block | Onset 5-10 min, Duration 0.5-1 hr (21) | | | Bupivacaine (0.5% Marcaine®) | 1-2 mg/kg, SQ | Local Block | Onset 15-30 min, Duration 4-8 hrs (21, 22) | | | Ropivacaine (0.2% Naropin [®]) | 1-2 mg/kg, SQ | Local Block | Onset 15-30 min, Duration 4-8 hrs (21) | | | Alpha 2 Agonist Reversal (Xylazine and Medetomidine) | | | | | |--|--|----------|-----------------|--| | Agent | Dosage | Use | Comments (Ref.) | | | Yohimbine (Xylazine Reversal) | 0.2 mg/kg, IM SC | Reversal | (23) | | | Atipamezole (Medetomidine Reversal) | 5 mg for every 1 mg of
Medetomidine, IM, SC | Reversal | (23) | | | Atipamezole (Xylazine Reversal) | 1 mg for every 10 mg of Xylazine IM, SC | Reversal | (11, 23) | | | Analgesics (Pain Relief) | | | | | | |---|--------------------------------|-----|----------------------------|--|--| | Opioid | Dosage | DEA | Dosing Frequency (Ref.) | | | | Buprenorphine (Buprenex®) | 0.05-0.2 mg/kg, SC IM IP | Yes | 8-12 hrs (23, 24) | | | | Oxymorphone | 0.2-0.5 mg/kg, SC IM IP | Yes | 6-12 hrs (23, 24) | | | | Butorphanol | 1-5 mg/kg, SC IM IP | Yes | 2-4 hrs (23, 24) | | | | NSAID Anti-Inflammatory Drug | | | | | | | Meloxicam (Metacam®) | 1-2 mg/kg, SC | No | 24 hrs (24) | | | | Carprofen (Rimadyl [®]) | 5 mg/kg, SC | No | 24 hrs (24) | | | | Flunixin (Banamine®) | 2.5 mg/kg, SC | No | 12-24 hrs (23, 24) | | | | Ketoprofen (Ketofen®) | 5 mg/kg, SC | No | 12-24 hrs (24) | | | | NSAID (Water Dosing) | | | | | | | Ibuprofen (Children's Advil Elixir)** | 2-4.5 mg/mL drinking water, PO | No | Given in water bottle (24) | | | | Acetaminophen (Children's Tylenol Elixir)** | 7.5 mg/kg PO | No | Given in water bottle (23) | | | | ** Due to limited water consumption by this species, please seek veterinary consultation of administration of | | | | | | analgesics in the water to gerbils. ### Rabbit Anesthetics and Analgesics Modified 2-6-2012 | Inhaled Anesthetic Dru | ıgs | | | |------------------------|---------------------|-------------|---| | Agent | Dosage | Route | Comments (Ref.) | | <u>Isoflurane</u> | Induction: 3-5% | Inhaled | Administer via precision | | | Maintenance: 1.5-3% | ±Nose Cone | vaporizer & compressed O ₂ . | | | | ±Intubation | | | Agent(s) | Dosage | Use |
Comments (Ref.) | |--------------|--------------------|-----------|-----------------| | Acepromazine | 0.25-1.0 mg/kg, IM | Pre-med | (1, 23, 24) | | Xylazine | 1-5 mg/kg, IM, SC | Pre-med | (23) | | Medetomidine | 0.25 mg/kg, IM | Pre-med | (24) | | Diazepam | 1-5 mg/kg, IM | Pre-med | (23) | | Midazolam | 1-2 mg/kg, IM | Pre-med | (23) | | Propofol | 5-8 mg/kg, IV | Induction | (23) | | Injectable Anesthetics Combinations | | | | | |-------------------------------------|-------------------------------|------------|-----------------|--| | Agent(s) | Dosage | Use | Comments (Ref.) | | | Ketamine Xylazine | 25-35 5 mg/kg, IM SC | Anesthesia | (1, 23, 24) | | | Ketamine Medetomidine | 15-35 0.25-0.5 mg/kg, IM SC | Anesthesia | (1, 23, 36, 37) | | | Ketamine Diazepam | 20-40 1-5 mg/kg, IM SC | Anesthesia | (23) | | | Pentobarbital | 20-40 mg/kg IV | Anesthesia | (1, 23) | | | Local Anesthetics | | | | | |-----------------------------|---------------|-------------|--|--| | Agent | Dosage | Use | Comments (Ref.) | | | Lidocaine (1-2%) | 2-4 mg/kg, SQ | Local Block | Onset 5-10 min, Duration 0.5-1 hr (21) | | | Bupivacaine (0.5% Marcaine) | 1-2 mg/kg, SQ | Local Block | Onset 15-30 min, Duration 4-8 hrs (21, 22, 38) | | | Ropivacaine (0.2% Naropin) | 1-2 mg/kg, SQ | Local Block | Onset 15-30 min, Duration 4-8 hrs (21) | | | Alpha 2 Agonist Reversal (Xylazine and Medetomidine) | | | | | |--|--|----------|----------|--| | Yohimbine (Xylazine Reversal) | 0.2 mg/kg, IM SC | Reversal | (23) | | | Atipamezole (Medetomidine Reversal) | 5 mg for every 1 mg of
Medetomidine, IM, SC | Reversal | (23, 36) | | | Atipamezole (Xylazine Reversal) | 1 mg for every 10 mg of Xylazine IM, SC | Reversal | (11, 23) | | | Analgesics (Pain Relief) | | | | | |--------------------------------------|----------------------------------|-----|--------------------------------|--| | Opioid | Dosage | DEA | Dosing Frequency (Ref.) | | | Fentanyl Trans-Dermal Patch | ½ of 25 mcg/hr per 3 kg body wt. | Yes | 72 hrs. Apply patch 24 hrs | | | | | | prior to surgery. (10, 24, 39) | | | Oxymorphone | 0.05-0.2 mg/kg IM SC | Yes | 8-12 hrs (23) | | | Fentanyl | 0.005-0.02 mg/kg IV | Yes | 0.5-1 hrs (10, 24) | | | Buprenorphine (Buprenex®) | 0.01-0.05 mg/kg IM SC IV | Yes | 8-12 hrs (1, 23, 24) | | | Butorphanol | 0.1-0.5 mg/kg IM SC IV | Yes | 4-6 hrs (1, 24) | | | NSAID Anti-Inflammatory Drug | | | | | | Meloxicam (Metacam®) | 0.3 mg/kg PO SC | No | 24 hrs (1) | | | Carprofen (Rimadyl®) | 4 mg/kg SC | No | 24 hrs (24) | | | · | 1-2.2 mg/kg PO | | 12 hrs (24) | | | Flunixin (Banamine®) | 1.0 mg/kg IM SC | No | 12-24 hrs. Do not administer | | | | | | for longer than 3 days (1, 23) | | | Ketoprofen (Ketofen®) | 1-3 mg/kg IM SC | No | 12-24 hrs (24) | | | NSAID Agent (Water Dosing) | | | | | | Ibuprofen (Children's Advil® Elixir) | 7.5 mg/kg PO | No | Given in water bottle (23) | | ### Dog Anesthetics and Analgesics Modified 2-6-2012 | Inhaled Anesthetic Drug | gs | | | |-------------------------|--|-----------------------|--| | Agent | Dosage | Route | Comments (Ref.) | | Isoflurane | Induction: 3-5%
Maintenance: 1.5-3% | Inhaled
Intubation | Induction with Iso should only be performed after sedation. Administered via a precision vaporizer and compressed O ₂ . | | Injectable Sedation for Induction Drugs/Combinations | | | | |--|--|-----------|---| | Agent(s) | Dosage | Use | Comments (Ref.) | | Acepromazine | 0.05 mg/kg, IV SC
0.1-0.25 mg/kg IM | Sedation | Max total dose 3 mg at time of injection (10, 40) | | Medetomidine | 5-10 mcg/kg, IM | Sedation | (40) | | Xylazine | 1.1-2.2 mg/kg, IV IM | Sedation | (40) | | Diazepam | 0.3-0.5 mg/kg, IV | Sedation | (40) | | Acepromazine Butorphenol | 0.05 0.2 mg/kg, IM SC | Pre-Med | (40) | | Acepromazine Morphine | 0.05-0.2 0.25-2, mg/kg IM SC | Pre-Med | (20) | | Acepromazine Hydromorphone | 0.1-0.25 0.05-0.1 mg/kg IM | Pre-Med | Will induce vomiting (40) | | Propofol | 4-6 mg/kg, IV | Induction | (40) | | Injectable Anesthetic | | | | |-----------------------|-----------------|------------|-----------------------| | Agent | Dosage | Use | Comments (Ref.) | | Pentobarbital | 20-30 mg/kg, IV | Anesthetic | Rarely Indicated (20) | | Local Anesthetics | | | | |------------------------------|-------------------|-------------|---| | Agent | Dosage | Use | Comments (Ref.) | | Lidocaine (1-2%) | 2-4 mg/kg max, SQ | Local Block | Onset 5-10 min, Duration 0.5-1 hr (<i>41</i>) | | Bupivacaine (0.5% Marcaine®) | 1-2 mg/kg max, SQ | Local Block | Onset 15-30 min, Duration 4-8 hrs (41, 42) | | Ropivacaine (0.2% Naropin®) | 1-2 mg/kg max, SQ | Local Block | Onset 15-30 min, Duration 4-8 hrs (<i>41</i>) | | Alpha 2 Agonist Reversal (Medetomidine) | | | | |---|--|----------|------| | Atipamezole (Medetomidine Reversal) | 5 mg for every 1 mg of
Medetomidine, IM, SC | Reversal | (10) | | Atipamezole (Xylazine Reversal) | 1 mg for every 10 mg of Xylazine IM, SC | Reversal | (11) | | Opioid | Dosage | DEA | Dosing Frequency (Ref.) | |-------------------------------------|--|-----|--| | Fentanyl Trans-Dermal Patch | 2.5 mcg/hr per kg body weight | Yes | 72 hrs. Apply 24 hrs prior to surgery. (1, 10, 43) | | Oxymorphone | 0.05-0.2 mg/kg, IV IM SC | Yes | 1-2 hrs (10, 40) | | Fentanyl | 0.01 mg/kg, IV IM SC | Yes | 2 hrs (40) | | Buprenorphine (Buprenex®) | 0.01-0.02 mg/kg, IV IM SC | Yes | 6 hrs (1, 40) | | Butorphanol | 0.1-1 mg/kg, IV SC | Yes | 2-4 hrs (10, 40) | | Tramadol | 1-4 mg/kg, PO | No | 6 hrs No Citation | | NSAID Anti-Inflammatory Drug | | | • | | Meloxicam (Metacam®) | 0.2 mg/kg loading, PO IV SC
0.1 mg/kg PO IV SC | No | 24 hrs (1, 10) | | Carprofen (Rimadyl [®]) | 4 mg/kg once loading, PO IV
2.2 mg/kg PO IV IM SC | No | 12 hrs (1, 10) | | Ketoprofen (Ketofen®) | 2 mg/kg once loading, IV IM SC
1 mg/kg, PO IM | No | 24 hrs (10) | ### Pig Anesthetics and Analgesics Modified 2-6-2012 | Inhaled Anesthetic Dru | gs | | | |------------------------|--|-----------------------|--| | Agent | Dosage | Route | Comments (Ref.) | | Isoflurane | Induction: 3-5%
Maintenance: 1.5-3% | Inhaled
Intubation | Induction with Iso should only be performed after sedation. Administered via a precision vaporizer and compressed O ₂ . | | Injectable Sedation for Induction Drugs/Combinations | | | | |--|------------------------------|-----------|---------------------------| | Agent(s) | Dosage | Use | Comments (Ref.) | | Ketamine Xylazine Acepromazine | 20 2 0.2 mg/kg, IM SC | Induction | Non-survival Surgery (20) | | Ketamine Xylazine Acepromazine | 10-15 2 0.2 mg/kg, IM SC | Induction | Survival Surgery (20) | | Ketamine Acepromazine | 22 1.1 mg/kg, IM SC | Induction | (20) | | Midazolam | 0.1-0.5 mg/kg, IV | Induction | (1, 44) | | Propofol | 0.8-1.6 mg/kg, IV | Induction | (1, 44) | | Injectable Anesthetics Combinations | | | | | |-------------------------------------|------------------------------|------------|-----------------|--| | Agent | Dosage | Use | Comments (Ref.) | | | Propofol Fentanyl CRI | 3 mg/kg/hr 3 mcg/kg/hr, IV | Anesthesia | (20) | | | Pentobarbital | 20-40 mg/kg, IV | Anesthesia | (1) | | | Telazol [®] | 4-8 mg/kg, IM SC | Anesthesia | (1, 44) | | | Local Anesthetics | | | | |------------------------------|---------------|-------------|-----------------------------------| | Agent | Dosage | Use | Comments (Ref.) | | Lidocaine (1-2%) | 2-4 mg/kg, SQ | Local Block | Onset 5-10 min, Duration 0.5-1 hr | | Bupivacaine (0.5% Marcaine®) | 1-2 mg/kg, SQ | Local Block | Onset 15-30 min, Duration 4-8 hrs | | Ropivacaine (0.2% Naropin®) | 1-2 mg/kg, SQ | Local Block | Onset 15-30 min, Duration 4-8 hrs | | Alpha 2 Agonist Reversal (Xylazine and Medetomidine) | | | | |--|--|----------|------| | Yohimbine (Xylazine Reversal) | 1 mg/kg, IV | Reversal | (1) | | Atipamezole (Medetomidine Reversal) | 5 mg for every 1 mg of
Medetomidine
IM, SC | Reversal | (10) | | Atipamezole (Xylazine Reversal) | 1 mg for every 10 mg of Xylazine IM, SC | Reversal | (11) | | Analgesics (Pain Relief) | | | | | |---|-----------------------|-----|--|--| | Opioid | Dosage | DEA | Dosing Frequency (Ref.) | | | Fentanyl Trans-Dermal Patch | 2.5 mcg/hr/kg | Yes | 72 hrs. Apply 24 hrs prior to surgery. (1, 10, 44, 45) | | | Oxymorphone | 0.15 mg/kg, IM SC | Yes | 4 hrs (1, 44) | | | Fentanyl | 0.05 mg/kg, IM SC | Yes | 2 hrs (1) | | | Buprenorphine (Buprenex®) | 0.05-0.1 mg/kg, IM SC | Yes | 8-12 hrs (1, 44) | | | Butorphanol | 0.1-0.3 mg/kg, IM SC | Yes | 4-6 hrs (1, 44) | | | NSAID Anti-Inflammatory Drug | | | · · · · · · · · · · · · · · · · · · · | | | Carprofen (Rimadyl®)*** | 2 mg/kg, IM SC | No | 24 hrs (46) | | | ` , | 2-4 mg/kg, PO | | 12 hrs (46) | | | Meloxicam (Metacam®)*** | 0.4 mg/kg, PO IM SC | No | 24 hrs (46) | | | Flunixin (Banamine®)*** | 1-4 mg/kg, IM
SC | No | 21-24 hrs (46) | | | *** Longterm (> 3 days) use of NSAIDs has the potential to induce gastrointestinal ulceration and decreased appetite. | | | | | Famotidine (Pepcid AC) 0.5-1 mg/kg should be considered in these situations. ### Sheep Anesthetics and Analgesics Modified 9-21-2012 | Inhaled Anesthetic Dru | gs | | | |------------------------|--|-----------------------|--| | Agent | Dosage | Route | Comments (Ref.) | | Isoflurane | Induction: 3-5%
Maintenance: 1.5-3% | Inhaled
Intubation | Induction with Iso should only be performed after sedation. Administered via a precision vaporizer and compressed O ₂ . | | Injectable Sedation for Induction Drugs/Combinations | | | | |--|----------------------------------|-----------|-----------------| | Agent(s) | Dosage | Use | Comments (Ref.) | | Diazepam | 0.1-0.3 mg/kg, IV | Sedation | (1, 47) | | Acepromazine | 0.5 mg/kg, SC IM IV | Sedation | (1) | | Butorphanol | 0.5 mg/kg, SC | Sedation | (1) | | Xylazine | 0.03-0.2 mg/kg IM IV | Sedation | (1) | | Medetomidine | 0.006-0.15 mg/kg, IM IV | Sedation | (1) | | Ketamine Diazepam | 17.5 0.2 mg/kg, IV | Induction | (20) | | | 4.0 0.4 mg/kg, IV | | (1) | | Propofol | 3-5 mg/kg, 0.4-0.5 mg/kg/min, IV | Induction | (1, 48, 49) | | Pentobarbital | 20-25 mg/kg, IV | Induction | (1) | | E 1047 + D + 1 + 1 | | | | Food/Water Restriction: food restriction for 24 hrs and water restriction 12 hrs prior to surgery is considered a standard veterinary practice in the preparation of ruminants (sheep, goats, cows, etc.) for anesthesia. | Local Anesthetics | | | | |------------------------------|---------------|-------------|-----------------------------------| | Agent | Dosage | Route | Comments (Ref.) | | Lidocaine (1-2%) | 2-4 mg/kg, SQ | Local Block | Onset 5-10 min, Duration 0.5-1 hr | | Bupivacaine (0.5% Marcaine®) | 1-2 mg/kg, SQ | Local Block | Onset 15-30 min, Duration 4-8 hrs | | Ropivacaine (0.2% Naropin®) | 1-2 mg/kg, SQ | Local Block | Onset 15-30 min, Duration 4-8 hrs | | Alpha 2 Agonist Reversal (Xylazine and Medetomidine) | | | | |--|--|----------|-----------------| | Agent | Dosage | Route | Comments (Ref.) | | Yohimbine (Xylazine Reversal) | 0.0125-0.2 mg/kg, IM SC | Reversal | (1) | | Atipamezole (Medetomidine Reversal) | 5 mg for every 1 mg of
Medetomidine, IM, SC | Reversal | (1) | | Atipamezole (Xylazine Reversal) | 1 mg for every 10 mg of Xylazine IM, SC | Reversal | (11, 44) | | Analgesics (Pain Relief) | | | | |-----------------------------------|----------------------------|-----|--| | Opioid | Dosage | DEA | Dosing Frequency (Ref.) | | Fentanyl Trans-Dermal Patch | 100 mcg/hr per 60 kg | Yes | 72 hrs. Apply 12 hrs prior to surgery. (50-52) | | Buprenorphine (Buprenex®) | 0.005-0.01 mg/kg, SC IM IV | Yes | 4-6 hrs (20, 44, 47) | | Butorphanol | 0.1-0.5 mg/kg, IM IV | Yes | 1-3 hrs (1) | | Morphine | 0.2-00.5 mg/kg | Yes | 4 hrs (1) | | Fentanyl | 0.01 mg/kg, IV | Yes | 1 hr (<i>1, 47</i>) | | NSAID Anti-Inflammatory Drug | | | | | Flunixin (Banamine®) | 2.2 mg/kg, IM IV | No | 12-24 hrs (1, 10, 44, 47) | | | 1.1 mg/kg, IM IV | | 8-12 hrs (1, 10, 44, 47) | | Ketoprofen (Ketofen®) | 2-3 mg/kg, IV PO | No | 24 hrs (10) | | Carprofen (Rimadyl [®]) | 2-4 mg/kg, SC IM | No | 24 hrs (<i>44</i>) | | Phenylbutazone | 2-6 mg/kg, IV PO | No | 24 hrs (44, 47) | | Other Analgesics | | | | | Xylazine | 0.05 mg/kg, IV | No | 1-2 hr (1, 10, 47) | ### **Non-Pharmaceutical Grade Anesthetics** [Use Requires Scientific Justification and IACUC Approval] #### Mice | Non-Pharmaceutical Grade Injectable Anesthetics | | | | |---|-------------------|------------|----------------------------| | Agent | Dosage | Use | Comments (Ref.) | | Tribromoethanol (TBE) † | 300 mg/kg, IP | Anesthesia | (1, 20) | | Choral Hydrate | 370-400 mg/kg, IP | Anesthesia | (1, 20) | | Alpha Chloralose | 114 mg/kg, IP | Anesthesia | 5% solution (1, 20) | | EMTU (Inactin) | 80 mg/kg, IP | Anesthesia | (20) | | Ethyl Carbamate (Urethane) | 1.25-2.5 g/kg, IP | Anesthesia | Carcinogen. Not to be used | | | | | for survival surgical | | | | | procedures (18) | #### Rats | Non-Pharmaceutical Grade Injectable Anesthetics | | | | |---|-------------------|------------|--| | Agent | Dosage | Use | Comments (Ref.) | | Tribromoethanol (TBE) † | 300 mg/kg, IP | Anesthesia | (20) | | Choral Hydrate | 300-450 mg/kg, IP | Anesthesia | 4-5% solution (1, 20, 53) | | Alpha Chloralose | 55-65 mg/kg, IP | Anesthesia | (1, 20, 53) | | EMTU (Inactin) | 80-100 mg/kg, IP | Anesthesia | (20, 53) | | Ethyl Carbamate (Urethane) | 1-1.5 g/kg, IP | Anesthesia | Carcinogen. Not to be used for survival surgical | | | | | procedures (1, 20) | #### **Cats** | Non-Pharmaceutical Grade Injectable Anesthetics | | | | | |---|---------------|------------|-----------------|--| | Agent | Dosage | Use | Comments (Ref.) | | | Alpha Chloralose | 75 mg/kg, IV | Anesthesia | (20) | | | Chloral Hydrate | 300 mg/kg, IV | Anesthesia | (20) | | #### **Dogs** | Non-Pharmaceutical Grade Injectable Anesthetics | | | | | |---|------------------|------------|-----------------|--| | Agent | Dosage | Use | Comments (Ref.) | | | Alpha Chloralose | 80-100 mg/kg, IV | Anesthesia | (20, 44) | | Prior to the selection of a non-pharmaceutical grade anesthetic to be used as the primary anesthetic for an experimental procedure, please review the UC Denver IACUC Policy <u>Use for Non-Pharmaceutical</u> <u>Grade Chemicals/Compounds</u>. The document will provide guidance in establishing scientific justification for the use of a non-pharmaceutical grade drug where other pharmaceutical grade drugs exist for the same or similar purpose. [†] The use of Tribromoethanol (TBE) is restricted by the UC Denver IACUC because a pharmaceutical grade preparation of the drug is no longer available where other pharmaceutical anesthetics do exist that can fulfill the same purpose. When approved for use by the IACUC, please refer to the IACUC approved procedure for the preparation, storage, use and disposal of TBE in the UC Denver IACUC Policy Use of Tribromoethanol (TBE) in Laboratory Animals. The internet link for UC Denver IACUC Policy page is: http://www.ucdenver.edu/academics/research/AboutUs/animal/Pages/Policies.aspx ### VI. References - 1. Fish R.E., Brown M.J., Danneman P.J., Karas A.Z., editors. <u>Animals</u> and <u>Analgesia in Laboratory</u> <u>Animals</u>. 2nd Ed. New York: Academic Press; 2008. - 2. Institute for Laboratory Animal Research (ILAR). <u>Recognition and Alleviation of Pain in</u> Laboratory Animals. 1st Ed. Washington DC: The National Academies Press; 2009. - 3. Code of Federal Regulations. Title 9, Chapter 1, Subchampter A Animal Welfare: Part 2 Regulations. 231d(iv)(B); 2008. - 4. Institute for Laboratory Animal Research. <u>Guide For the Care and Use of Laboratory Animals</u> 8th Ed. Washington, DC: The National Academic Press; 2011. - 5. Hayes K.E., Raucci Jr J.A., Gades N.M., Toth L.A. An Evaluation of Analgesic Regimens for Abdominal Surgery in Mice. *Contemp Topics Lab Anim Sci.* 2000; 39(6):18-23. - 6. Johnston N.A., Bosgraaf C., Cox L., Reichensperger J., Verhulst S., Patten Jr C., Toth L.A. Strategies for refinement of abdominal device implantation in mice: Strain, carboxymethylcellulose, thermal support, and atipamezole. *JAALAS*. 2007; 46(2):46-53. - 7. Blaha M.D., Leon L.R. Effects of indomethacin and buprenorphine analgesia on the postoperative recovery of mice. *JAALAS*. 2008; 47(4):8-19. - 8. Jacobsen K.R., Kalliokoski O., Teilmann A.C., Hau J., Abelson K.S. Postsurgical Food and Water Consumption, Fecal Corticosterone Metabolites, and Behavior Assessment as Noninvasive Measures of Pain in Vasectomized BALB/c Mice. *JAALAS*. 2012; 51(1):69-75. - 9. Arras M., Autenried P., Rettich A., Spaeni D., Rülicke T. Optimization of intraperitoneal injection anesthesia in mice: Drugs, dosages, adverse effects, and anesthesia depth. *Comp Med*. 2001; 51(5):443-56. - 10. Plumb D.C. Veterinary Drug Handbook: Pocket Edition. 4th Ed. Ames: Iowa State Press.; 2002. - 11. Jalanka H.H., Roeken B.O. The Use of Medetomidine, Medetomidine-Ketamine Combinations, and Atipamezole in Nondomestic Mammals: A Review. *J Zoo Wildl Med.* 1990; 21(3):259-82. - 12. Office of Laboratory Animal Welfare. Use of Non-Pharmaceutical-Grade Chemicals and Other Substances in Research with Animals. OLAW Online Seminars: OLAW; 2012. - 13. Foley P.L., Liang H., Crichlow A.R. Evaluation of a sustained-release formulation of buprenorphine for analgesia in rats. *JAALAS*. 2011; 50(2):198-204. - 14. Johns Hopkins University IACUC. Rodent Anesthesia: Open-Drop Exposure. [Web Page] Last-Updated: 2011, Downloaded: 2-3-2012; Available from: http://web.jhu.edu/animalcare/rdf/open-drop.html - 15. Taylor D.K., Mook D.M. Isoflurane waste anesthetic gas concentrations associated with the open-drop method. *JAALAS*. 2009; 48(1):61-4. - 16. Raabe B.M., Artwohl J.E., Purcell J.E., Lovaglio J., Fortman J.D. Effects of weekly blood collection in C57BL/6 mice. *JAALAS*. 2011; 50(5):680-5. - 17. Hahn N., Eisen R.J., Eisen L., Lane R.S. Ketamine-medetomidine anesthesia with atipamezole reversal: Practical anesthesia for rodents under field conditions. *Lab Animal*. 2005; 34(2):48-51. - 18. Janssen B.J.A., De Celle T., Debets J.J.M., Brouns A.E., Callahan M.F., Smith T.L. Effects of anesthetics on systemic hemodynamics in mice. *Am J Physiol Heart Circ
Physiol*. 2004; 287(456-4):H1618-H24. - 19. Baker N.J., Schofield J.C., Caswell M.D., McLellan A.D. Effects of early atipamezole reversal of medetomidine-ketamine anesthesia in mice. *JAALAS*. 2011; 50(6):916-20. - 20. University of Colorado Denver IACUC. Veterinary Anesthetic and Analgesic Formulary. 2nd Ed: University of Colorado Denver; 2006. - 21. University of British Columbia IACUC. Local Analgesia/Anesthesia for Rodents: Lidocaine/Bupivacaine/Ropivacaine. [PDF] Last-Updated: 2010, Downloaded: 1-24-2012; Available from: http://www.animalcare.ubc.ca/sop/Local Anesthetic SOP.pdf - 22. Washington University IACUC. Techniques Bupivacaine. [Web Page] Last-Updated: 2010, Downloaded: 1-24-2012; Available from: http://dcminfo.wustl.edu/techniques.html - 23. Hillyer E.V., Quesenberry K.E. <u>Ferrets, Rabbits, and Rodents: Clinical Medicine and Surgery</u>. 1st Ed. New York: W.B. Saunders; 1997. - 24. Carpenter J.W., editor. Exotic Animal Formulary. 3rd Ed. St. Louis: Elsevier Saunders; 2005. - 25. Roughan J.V., Flecknell P.A. Buprenorphine: A reappraisal of its antinociceptive effects and therapeutic use in alleviating post-operative pain in animals. *Lab Anim*. 2002; 36(3):322-43. - 26. Jang H.S., Choi H.S., Lee S.H., Jang K.H., Lee M.G. Evaluation of the anaesthetic effects of medetomidine and ketamine in rats and their reversal with atipamezole. *Vet Anaesth Analg.* 2009; 36(4):319-27. - Curtin L.I., Grakowsky J.A., Suarez M., Thompson A.C., Dipirro J.M., Martin L.B.E., Kristal M.B. Evaluation of buprenorphine in a postoperative pain model in rats. *Comp Med*. 2009; 59(1):60-71. - 28. Phifer C.B., Terry L.M. Use of hypothermia for general anesthesia in preweanling rodents. *Physiol Behav.* 1986; 38(6):887-90. - 29. Danneman P.J., Mandrell T.D. Evaluation of Five Agents/Methods for Anesthesia of Neonatal Rats. *Lab Anim Sci.* 1997; 47(4):386-95. - 30. Institute for Laboratory Animal Research (ILAR). <u>Guidelines for the Care and Use of Mammals in Neuroscience and Behavioral Research</u>. Washington, DC: The National Academies Press; 2003. - 31. Fox J.G., Barthold S.W., Davisson M.T., Newcomer C.E., Quimby F.W., Smith A.L., editors. The Mouse in Biomedical Research, Normative Biology, Husbandry, and Models. 2nd Ed. New York: Academic Press; 2007. - 32. Boston University IACUC. Anesthesia of the Neonatal Mice and Rats. [Web Page] Last-Updated: 1-7-2012, Downloaded: 1-11-2012; Available from: http://www.bu.edu/orccommittees/iacuc/policies-and-guidelines/anesthesia-of-the-neonatal-mice-and-rats/ - 33. University of Florida IACUC. Guideline: Anesthesia and Analgesia for Neonatal Rodents. [Web Page] Last-Updated: 8-16-2011, Downloaded: 1-11-2012; Available from: http://iacuc.ufl.edu/Policies/Changes%202011/Guideline%20Neonatal%20Anesthesia.pdf - 34. McLaughlin C.R., Dewey W.L. A comparison of the antinociceptive effects of opioid agonists in neonatal and adult rats in phasic and tonic nociceptive tests. *Pharmacol Biochem Behav*. 1994; 49(4):1017-23. - 35. Henke J., Baumgartner C., Röltgen I., Eberspächer E., Erhardt W. Anaesthesia with midazolam/medetomidine/fentanyl in chinchillas (Chinchilla lanigera) compared to anaesthesia with xylazine/ketamine and medetomidine/ketamine. *J Vet Med Ser A*. 2004; 51(5):259-64. - 36. Williams A.M., Wyatt J.D. Comparison of subcutaneous and intramuscular ketamine-medetomidine with and without reversal by atipamezole in Dutch belted rabbits (Oryctolagus cuniculus). *JAALAS*. 2007; 46(6):16-20. - 37. Henke J., Astner S., Brill T., Eissner B., Busch R., Erhardt W. Comparative study of three intramuscular anaesthetic combinations (medetomidine/ketamine, medetomidine/fentanyl/midazolam and xylazine/ketamine) in rabbits. *Vet Anaesth Analg*. 2005; 32(5):261-70. - 38. Boogaerts J., Declercq A., Lafont N., Benameur H., Akodad E.M., Dupont J.C., Legros F.J. Toxicity of bupivacaine encapsulated into liposomes and injected intravenously: Comparison with plain solutions. *Anesth Analg.* 1993; 76(3):553-5. - 39. Foley P.L., Henderson A.L., Bissonette E.A., Wimer G.R., Feldman S.H. Evaluation of fentanyl transdermal patches in rabbits: Blood concentrations and physiologic response. *Comp Med*. 2001; 51(3):239-44. - 40. Papich M.G. <u>Saunders Handbook of Veterinary Drugs: Small and Large Animals</u>. 1st Ed. St. Louis: Elsevier 2002. - 41. Feldman H.S., Arthur G.R., Covino B.G. Comparative systemic toxicity of convulsant and supraconvulsant doses of intravenous ropivacaine, bupivacaine, and lidocaine in the conscious dog. *Anesth Analg.* 1989; 69(6):794-801. - 42. Fossum T.H., Hedlund C.S., Hulse D.A., Johnson A.L., Seim III H.B., Willard M.D., Carroll G.L. <u>Small</u> Animal Surgery. St. Louis: Mosby; 1997. - 43. Gilberto D.B., Motzel S.L., Das S.R. Postoperative pain management using fentanyl patches in dogs. *Contemp Topics Lab Anim Sci.* 2003; 42(4):21-6. - 44. Fox J.G., Anderson L.C., Loew F.M., Quimby F.W., editors. <u>Laboratory Animal Medicine</u>. 2nd Ed. New York: Academic Press; 2002. - 45. Wilkinson A.C., Thomas Iii M.L., Morse B.C. Evaluation of a Transdermal Fentanyl System in Yucatan Miniature Pigs. *Contemp Topics Lab Anim Sci.* 2001; 40(3):12-6. - 46. Swindle M.M. Swine in the Laboratory. 2nd Ed. Boca Raton: CRC Press; 2007. - 47. Dart C. Suggestions For Anaesthesia and Analgesia in Sheep. [PDF] Last-Updated: 5-31-2005, Downloaded: 1-24-2012; Available from: No longer available online 9-21-2012 - 48. Lin H.C., Purohit R.C., Powe T.A. Anesthesia in sheep with propofol or with xylazine-ketamine followed by halothane. *Vet Surg*. 1997; 26(3):247-52. - 49. Correia D., Nolan A.M., Reid J. Pharmacokinetics of propofol infusions, either alone or with ketamine, in sheep premedicated with acepromazine and papaveretum. *Res Vet Sci.* 1996; 60(3):213-7. - 50. Colditz I., Dart C. The Sheep. ANZCCART Fact Sheet [PDF] Last-Updated: 2009, Downloaded: 4-12-2012; Available from: http://www.adelaide.edu.au/ANZCCART/publications/A9 SheepFactSheet.pdf - 51. Ahern B.J., Soma L.R., Boston R.C., Schaer T.P. Comparison of the analgesic properties of transdermally administered fentanyl and intramuscularly administered buprenorphine during and following experimental orthopedic surgery in sheep. *Am J Vet Res.* 2009 2009/03/01; 70(3):418-22. - 52. Ahern B.J., Soma L.R., Rudy J.A., Uboh C.E., Schaer T.E. Pharmacokinetics of fentanyl administered transdermally and intravenously in sheep. *Am J Vet Res*. 2010 2010/10/01; 71(10):1127-32. - 53. Suckow M.A., Weisbroth S.H., Franklin C.L., editors. <u>The Laboratory Rat</u>. 2nd Ed. New York: Elsevier Academic Press; 2006. ### **Acknowledgements:** We would like to thank the University of California San Francisco for providing the topic format and basic outline from which this document was inspired. ### **Additional Online Veterinary Formulary Resources** University of California, San Francisco http://www.iacuc.ucsf.edu/Proc/awMouseFrm.asp University of Minnesota http://www.ahc.umn.edu/rar/anesthesia.html Stanford School of Medicine http://vsc.stanford.edu/policies/anesthesia.html#anes University of Pittsburgh http://www.iacuc.pitt.edu/druglist.pdf **Broken Links (Oops! Page Not Found)?**: Please report any broken internet links to the UC Denver IACUC Office via email at iacuc@ucdenver.edu Last Modified: 9-21-2012 Version: UC Denver Veterinary Formulary – vG