FARADAY'S FIRST LAW

States that the mass of a substance formed during electrolysis is proportional to the quantity of electricity supplied, Q.

$$Q = It$$
 where $I = current (A)$
 $t = time (s)$

Charge of 1 electron, $e^- = 1.6 \times 10^{-19}$ C

Charge of 1 mol electrons

$$= 6.02 \times 10^{23} \times 1.6 \times 10^{-19} \text{ C}$$

$$= 1F$$

Faraday constant

$$F = 96500 \, \text{C} \, / \, \text{mol}$$

■ To obtain 1 mol of product at electrode, quantity of electrical charge required :

Example:

Ag+(
$$aq$$
) + e⁻ \rightarrow Ag(s)

1 mol e⁻ 1 mol Ag

1 F

96500 C

Cu²⁺(aq) + 2e⁻ \rightarrow Cu(s)

2 mol e⁻ 1 mol Cu

2 F

2 × 96500 C

Example 1:

A current of 0.50 A was applied to an electrolytic cell containing a $Cu(NO_3)_2$ solution for 5 hours at 25 °C and 1 atm.

- (a) Calculate the mass of Cu deposited. (A, Cu = 63.5)
- (b) Calculate the volume of gas collected at anode.

Solution:

$$Q = It$$
= 0.5 A × (5 × 60 × 60) s
= 9000 C
= 9000 C × $\frac{1 \text{ F}}{96500}$ C
= 0.09326 F

2.96 g

(b) Calculate the volume of gas collected at anode.

Anode (ox):
$$2H_2O(l) \longrightarrow O_2(g) + 4H^+(aq) + 4e^-$$

$$1 \text{ mol} \qquad 4F$$

$$4 F \equiv 1 \text{ mol } O_2$$

$$0.09326 F \equiv \frac{0.09326}{4} \times 1 \text{ mol}$$

$$= 0.02332 \text{ mol } O_2$$

$$PV = nRT$$

$$V = \frac{nRT}{P}$$

$$= \frac{0.02332 \text{ mol} \times 0.08206 \text{ L atm mol}^{-1} \text{ K}^{-1} \times 298 \text{ K}}{1 \text{ atm}}$$

$$= 0.5703 \text{ L}_{\text{max}}$$

Example 2:

A CrCl₃ solution is electrolyzed using inert electrodes. How many minutes needed to plate out 25 g Cr from the solution using a current of 2.75 A? (A_r Cr = 52)

Solution:

Mol of Cr =
$$\frac{25}{52}$$
 = 0.4808 mol

cathode (red):
$$Cr^{3+}(aq) + 3e^{-} \longrightarrow Cr(s)$$

3 F 1 mol

843.5 min

Example 3:

When an aqueous solution containing the gold ion, Aun+ is electrolysed by a current of 2.0 A for 4.0 hour, 19.7 g of of gold was deposited on the cathode. Calculate the charge on the gold ion.

Solution:

Mol of Au formed =
$$\frac{19.7}{197}$$
$$= 0.10 \text{ mol}$$

$$Q = It$$
= 2.0 A × (4.0 × 60 × 60) s
= 2.88 x 10⁴ C = $\frac{2.88 \times 10^4}{96500}$
= 0.2984 F

$$Au^{n+}$$
 (aq) + ne⁻ → Au (s)
0.10 mol Au = 0.2984 F
1 mol Au = $\frac{1}{0.10}$ × 0.2984
= 2.984
≈ 3 F
n = 3
∴ Charge of gold ion = +3